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Life is Dynamics

…including proteins and DNA
Limongelli et al., Angew. Chem. Int. Ed. (2013) Limongelli et al., PNAS (2010) 

Source: wikimedia commons 
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What if we neglect dynamics? 

:)

Life is Dynamics
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Life is Dynamics
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✓ Kb can be measured by experiments

✓Kb is correlated to ΔGbind as follows:
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Molecular Binding

Limongelli WIREs Comput. Mol. Sci. (2020)
Gilson, Zhou.  Annu Rev Biophys Biomol Struct (2007)
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Limongelli WIREs Comput. Mol. Sci. (2020)
Gilson, Zhou.  Annu Rev Biophys Biomol Struct (2007)

Molecular Binding
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The accuracy is always traded for the speed
General Rule

Fast Methods

Molecular Docking

Limongelli WIREs Comput. Mol. Sci. (2020)
Gilson, Zhou.  Annu Rev Biophys Biomol Struct (2007)

Molecular Dynamics
Monte Carlo

Accurate Methods

End Point Methods:
LIE - MMPBSA

Pathway Free Energy Methods:
FEP - TI - Umbrella Sampling - 

Funnel-Metadynamics (FM)

Computational Methods
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Outline of the Class

✓Funnel-Metadynamics (FM)
• Ligand/Protein binding free-energy

• Ligand/Protein binding kinetics

• Funnel-Metadynamics Automated Protocol (FMAP)

`
Funnel metadynamics as accurate binding
free-energy method
Vittorio Limongellia,1, Massimiliano Bonomib, and Michele Parrinelloc,d,1

aDepartment of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; bDepartment of Bioengineering and Therapeutic Sciences, and California
Institute of Quantitative Biosciences, University of California, San Francisco, CA 94158; cDepartment of Chemistry and Applied Biosciences, Eidgenössiche
Technische Hochschule (ETH), 8006 Zürich, Switzerland; and dFacoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana,
CH-6900 Lugano, Switzerland

Contributed by Michele Parrinello, March 7, 2013 (sent for review December 20, 2012)

A detailed description of the events ruling ligand/protein interac-
tion and an accurate estimation of the drug affinity to its target is
of great help in speeding drug discovery strategies. We have de-
veloped a metadynamics-based approach, named funnel metady-
namics, that allows the ligand to enhance the sampling of the target
binding sites and its solvated states. This method leads to an effi-
cient characterization of the binding free-energy surface and an
accurate calculation of the absolute protein–ligand binding free
energy. We illustrate our protocol in two systems, benzamidine/
trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray con-
formation has been found as the lowest free-energy pose, and the
computed protein–ligand binding free energy in good agreement
with experiments. Furthermore, funnel metadynamics unveils im-
portant information about the binding process, such as the presence
of alternative binding modes and the role of waters. The results
achieved at an affordable computational cost make funnel meta-
dynamics a valuable method for drug discovery and for dealing with
a variety of problems in chemistry, physics, and material science.

enhanced sampling | protein/ligand binding | ligand docking

Studying the molecular interactions between a drug and its
target helps in understanding the target functional mechanism

and offers the possibility for exogenous control of its physiological
activity. In recent years, a vast experimental and computational
effort has revealed in ever-more-precise detail the ligand/target
recognition mechanism (1, 2). In this context, an accurate estima-
tion of the ligand-binding affinity is in great demand because it
would facilitate many steps of the drug discovery pipeline, such as
structure-based drug design and lead optimization; this is not,
however, a simple task. In fact, an accurate estimation of the
binding affinity or, equivalently, the absolute protein–ligand bind-
ing free energy, requires an accurate description of the ligand/
protein interactions, their flexibility, and the solvation process.
Many methods have been proposed to tackle this problem. For
instance, docking protocols are widely used to generate and rank
candidate poses based on empirical scoring functions, either
physically or statistically based (3–5). These techniques have been
proven to be highly efficient in screening a large number of com-
pounds in a short time (6); this, however, at the price of limited
accuracy in estimating affinities (7).
Alternatively, a variety of methods to describe ligand/protein

interactions in a more accurate way at higher computational cost
have been proposed. These techniques can be grouped in two
categories: (i) endpoint and (ii) pathway methods. The former
group is composed of those techniques that sample ligand and
protein in unbound and bound states and compute the protein–
ligand binding free energy by taking the difference between the
absolute free energy of these two states. Examples include mi-
croscopic linear response approximation (8), linear interaction
energy (9, 10), protein dipoles Langevin dipoles (11), as well as
molecular mechanics Poisson–Boltzmann surface area, and gen-
eralized Born surface area (12).
At variance with endpoint methods, in pathway methods, the

ligand is gradually separated from the protein. The binding free

energy is then obtained by summing different contributions
coming from a discretized path that connects the initial and final
state. This class includes methods in which the ligand/protein
interactions are gradually switched off, such as thermodynamic
integration (13), free-energy perturbation (14, 15), double-
decoupling method (16), and double-annihilation method (17).
Techniques such as steered molecular dynamics (SMD) (18) and
umbrella sampling (19), where the ligand and the protein are
physically separated from each other, also belong to this group.
While in SMD, the ligand is dragged out from the protein using a
moving restraining potential, in umbrella sampling, the path from
the bound to the unbound state is divided in a finite number of
windows, which are independently sampled.
Though these methods have been successfully used to compute

the ligand binding free energy in many cases (20–22), the re-
quirement of knowing in advance the bindingmode hampers amore
general applicability. The intensity of the efforts in developing these
methods reflects both the great potential of these calculations and
their difficulties. In particular, the difficulties arise mainly from the
fact that the ligand/protein binding process is a rare event, difficult
to sample with standard techniques such as molecular dynamics
(MD). Even the most ambitious efforts in this direction, though
revealing precious details of the binding process (23, 24), have not
been able to determine accurately the binding energy. To achieve
this result, the use of enhanced sampling methods is mandatory.
Among the emerging techniques, metadynamics (25) has proven

to be very useful in studying long-timescale processes (26, 27), par-
ticularly in complex ligand/protein binding cases (28–30). Metady-
namics works by adding an external history-dependent potential that
acts on few degrees of freedom, named collective variables (CVs). In
such a way, the sampling is accelerated, and the free-energy surface
(FES) of the process can be calculated from the added potential.
Unfortunately, only a qualitative estimation of the protein–ligand
binding free energy could be obtained for the binding processes
studied so far (28, 31). In fact, once the ligand leaves the binding
pocket, it has difficulty finding its way back, and starts exploring all of
the possible solvated states. These conformations represent a vast
part of the configuration space that cannot be sampled thoroughly in
a limited computation time. Therefore, once out, the ligand does not
again find the binding site, and multiple binding/unbinding events,
which are the key to an accurate determination of the binding free
energy in metadynamics, cannot be observed.
Here, we present a metadynamics-based approach, named

funnel metadynamics (FM), which overcomes all these limi-
tations and allows an accurate estimation of the absolute

Author contributions: V.L., M.B., and M.P. designed research; V.L. performed research;
V.L., M.B., and M.P. contributed new reagents/analytic tools; V.L., M.B., and M.P. analyzed
data; and V.L., M.B., and M.P. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence may be addressed. E-mail: vittoriolimongelli@gmail.com or
parrinello@phys.chem.ethz.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1303186110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1303186110 PNAS Early Edition | 1 of 6
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Limongelli et al. PNAS (2010)
Limongelli et al. PNAS (2012)
Grazioso, Limongelli et al. JACS (2012)

Further Reading:
Raniolo & Limongelli Nature Protocols (2020)
Limongelli and co. PNAS (2017)

2013
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Theory in the Class

• Metadynamics and Well-Tempered Metadynamics

• Collective Variables (CVs)

• Variational Approach to Conformational dynamics (VAC) Metadynamics

• Funnel-Metadynamics (FM)

• Infrequent Metadynamics (IM)

• Path Collective Variables (PCV)

• Multiple Walker Simulations

• Reweigthing the Boltzmann distribution in not-biased CV space



• MD timestep ~ 1 fs (bond-stretching, bending,...)

• Biologically relevant processes (ligand binding, protein/DNA folding...) > 101 μs

10
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The Time Scale Issue

Classical MD
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Many microscopic variables
q [atomic coordinates]

A few collective variables (CVs)
s [distances, angles, ...]

fine-grained description
potential energy:
U(q) Newton
dynamics

coarse-grained description
free energy:
F(s)=-kBTlog∫exp(-βU)δ(s-s(q))dq
Langevin dynamics

Major advantage:
Analysis of q-space trajectories by means of modeling dynamics in s-space

Zwanzig Phys Rev (1961)
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 
F = m a 

Dimensional Reduction
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Laio and Parrinello, PNAS (2002)

Δ

Metadynamics

Classical MD Metadynamics
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VG(S, t ! 1) = �F (S) + C

Laio and Parrinello PNAS (2002)
Bussi, Laio, Parrinello PRL (2006)

Metadynamics



Barducci, Bussi, Parrinello PRL (2008)
Dama, Parrinello, Voth PRL (2014)

initial rate rate decreases as 
exp(-V/ΔT)

metadynamics
bias

F (s, t) = −

T +∆T

∆T
V (s, t), (1)

V̇ (S, t) =
⇥�S,S(t)

1 + �N(S,t)
kB�T

= ⇥ e�
V (S,t)
kB�T �S,S(t)V̇ (S, t) =

⇥�S,S(t)

1 + �N(S,t)
kB�T

= ⇥ e�
V (S,t)
kB�T �S,S(t)

Well-Tempered Metadynamics



protein–ligand binding free energy. In particular, in FM, a fun-
nel-shaped restraint potential is applied to the system, reducing
the space to explore in the unbound state. In such a way, the
sampling of ligand-bound and -unbound states is highly en-
hanced, thus leading to an accurate estimation of the binding
FES within a reasonable simulation time. We have used FM to
study the binding process in two different systems: benzami-
dine/trypsin and SC-558/cyclooxygenase 2 (COX-2). The latter
system represents a particularly challenging case study with the
coexistence of protein motions, solvent effect, and complex
binding pathways. In both cases, the X-ray pose turned out to
have the lowest free-energy value, and the computed absolute
protein–ligand binding free energy was in good agreement with
experiments. Furthermore, from FM simulations, important in-
formation on the binding process has been disclosed, such as the
role of waters in the benzamidine/trypsin case and the presence
of an alternative ligand binding mode in COX-2.
Using FM, no a-priori information about the ligand binding

mode is required, and the exploration capability of the original
method remains unaltered. Thus, the exploration of buried
binding sites is possible, while taking into account slow protein
motion and solvent effects. The present protocol represents
a most valuable method to study ligand/protein interaction, and
its relatively low computational cost renders its use appealing
even in industrial applications where speed is valued.

Theoretical Background
Funnel Idea. Sampling ligand/protein binding with all-atoms MD
simulations in explicit solvent is extremely attractive because it can
provide molecular information at high resolution. Unfortunately,
these processes usually have a long timescale and therefore cannot
be sampled at reasonable computational costs. Nevertheless, the
advance in computer power and the advent of graphics processor
units have allowed the study of ligand/protein binding processes
using plain MD simulations, however still at great computational
cost and using dedicated hardware (23, 24). In fact, tens of
microseconds ofMD simulations were necessary to collect enough
statistics to describe the ligand binding process.
An alternative method is to use enhanced sampling techniques

to access long-timescale events within a reasonable computa-
tional time. One of these techniques is umbrella sampling, which
has largely been used to study ligand/protein interactions and to
compute the absolute protein–ligand binding free energy (20,
21). However, this technique fails in exploring thoroughly the
fully solvated state of the ligand. This limitation has been rem-
edied by using a cylindrical restraint potential to reduce the
sampling space (32, 33). The effect of the external potential can
be rigorously taken into account (34), and the binding constant
Kb in the presence of the restraint is given by

Kb = eβΔGsite

Z

site

dz e
−β½W ðzÞ−Wref $Su: [1]

Here, ΔGsite is the change in the free energy of the bound state
caused by the presence of the restraint, β = (k B T)−1, k B is the
Boltzmann constant, T the temperature of the system, and Su is
the cross-section of the cylinder. The potentialW(z) and its value
in the unbound state, Wref, can be derived from the potential of
mean force (PMF). Eq. 1 provides an unbiased estimator of Kb,
independent of the choice of the restraint potential. If the radius
of the cylinder is chosen to be much larger than the lateral
fluctuations of the ligand in the binding site, the restraint poten-
tial is not felt by the ligand in the binding site, thus ΔGsite = 0.
Unfortunately, the choice of the radius is not simple. In fact,
though a small radius value limits the exploration in the unbound
state, it reduces also the exploration of the binding site. How-
ever, choosing a large radius is not advantageous because it

increases the space to be sampled in the unbound state and
hence the computational time. As a result, the PMF calculation
might be affected by this choice and, consequently, the estima-
tion of the protein–ligand binding free energy (21).
To overcome this limitation, we have developed a funnel-

shaped restraint potential that can be applied to the target
protein. This potential is a combination of a cone restraint, which
includes the binding site, and a cylindric part, which is directed
toward the solvent (Fig. 1). Using the funnel potential during the
simulation, the system does not feel any repulsive bias when the
ligand explores regions inside the funnel area. As the ligand
reaches the edge of the funnel, a repulsive bias is applied to the
system, disfavoring it from visiting regions outside the funnel. As
can be seen in Fig. 1, if the shape of the funnel is properly
chosen, the sampling at the binding site is not affected by the
external bias, whereas in the bulk water the repulsive potential
reduces the space to be explored to a cylindric region; this favors
the observation of multiple binding/unbinding events leading to
a faster convergence of the results.

Fig. 1. (A) Schematic representation of the ligand/protein binding process
and the funnel restraint potential used in FM calculations. The shape of the
funnel can be customized on the target by setting a few parameters. In
particular, given z, the axis defining the exit-binding path of the ligand, zcc is
the distance where the restraint potential switches from a cone shape into
a cylinder. The α-angle defines the amplitude of the cone, and Rcyl is the
radius of the cylindrical section. (B) The funnel restraint potential applied to
trypsin (Upper Left) and COX-2 (Upper Right) enzymes with the ligands
considered in the study, benzamidine (Lower Left) and SC-558 (Lower Right).
In the trypsin case, α is 0.55 rad and zcc is 18 Å (Table S1). In the COX case, α is
0.6 rad and zcc is 44 Å (Table S2). In both cases, Rcyl is set to 1 Å.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1303186110 Limongelli et al.
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Limongelli et al. PNAS (2010) 

SC-558 activities:
IC50(COX-1) = 17.7 µM
IC50(COX-2) = 9.3 nM

Lanzo et al., Biochemistry (2000)

NSAIDs Mechanism of Action
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C0 = Standard Concentration (constant)

�G0
b = � 1

�
ln(C0 Kb) , (2)

Problems in converging the free energy in the unbound region

Bound Unbound

Protein/Ligand Binding

Limongelli et al. PNAS (2010) 
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�G0
b = � 1

�
ln(C0 Kb) , (2)

Protein/Ligand Binding

`
Funnel metadynamics as accurate binding
free-energy method
Vittorio Limongellia,1, Massimiliano Bonomib, and Michele Parrinelloc,d,1

aDepartment of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; bDepartment of Bioengineering and Therapeutic Sciences, and California
Institute of Quantitative Biosciences, University of California, San Francisco, CA 94158; cDepartment of Chemistry and Applied Biosciences, Eidgenössiche
Technische Hochschule (ETH), 8006 Zürich, Switzerland; and dFacoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana,
CH-6900 Lugano, Switzerland

Contributed by Michele Parrinello, March 7, 2013 (sent for review December 20, 2012)

A detailed description of the events ruling ligand/protein interac-
tion and an accurate estimation of the drug affinity to its target is
of great help in speeding drug discovery strategies. We have de-
veloped a metadynamics-based approach, named funnel metady-
namics, that allows the ligand to enhance the sampling of the target
binding sites and its solvated states. This method leads to an effi-
cient characterization of the binding free-energy surface and an
accurate calculation of the absolute protein–ligand binding free
energy. We illustrate our protocol in two systems, benzamidine/
trypsin and SC-558/cyclooxygenase 2. In both cases, the X-ray con-
formation has been found as the lowest free-energy pose, and the
computed protein–ligand binding free energy in good agreement
with experiments. Furthermore, funnel metadynamics unveils im-
portant information about the binding process, such as the presence
of alternative binding modes and the role of waters. The results
achieved at an affordable computational cost make funnel meta-
dynamics a valuable method for drug discovery and for dealing with
a variety of problems in chemistry, physics, and material science.

enhanced sampling | protein/ligand binding | ligand docking

Studying the molecular interactions between a drug and its
target helps in understanding the target functional mechanism

and offers the possibility for exogenous control of its physiological
activity. In recent years, a vast experimental and computational
effort has revealed in ever-more-precise detail the ligand/target
recognition mechanism (1, 2). In this context, an accurate estima-
tion of the ligand-binding affinity is in great demand because it
would facilitate many steps of the drug discovery pipeline, such as
structure-based drug design and lead optimization; this is not,
however, a simple task. In fact, an accurate estimation of the
binding affinity or, equivalently, the absolute protein–ligand bind-
ing free energy, requires an accurate description of the ligand/
protein interactions, their flexibility, and the solvation process.
Many methods have been proposed to tackle this problem. For
instance, docking protocols are widely used to generate and rank
candidate poses based on empirical scoring functions, either
physically or statistically based (3–5). These techniques have been
proven to be highly efficient in screening a large number of com-
pounds in a short time (6); this, however, at the price of limited
accuracy in estimating affinities (7).
Alternatively, a variety of methods to describe ligand/protein

interactions in a more accurate way at higher computational cost
have been proposed. These techniques can be grouped in two
categories: (i) endpoint and (ii) pathway methods. The former
group is composed of those techniques that sample ligand and
protein in unbound and bound states and compute the protein–
ligand binding free energy by taking the difference between the
absolute free energy of these two states. Examples include mi-
croscopic linear response approximation (8), linear interaction
energy (9, 10), protein dipoles Langevin dipoles (11), as well as
molecular mechanics Poisson–Boltzmann surface area, and gen-
eralized Born surface area (12).
At variance with endpoint methods, in pathway methods, the

ligand is gradually separated from the protein. The binding free

energy is then obtained by summing different contributions
coming from a discretized path that connects the initial and final
state. This class includes methods in which the ligand/protein
interactions are gradually switched off, such as thermodynamic
integration (13), free-energy perturbation (14, 15), double-
decoupling method (16), and double-annihilation method (17).
Techniques such as steered molecular dynamics (SMD) (18) and
umbrella sampling (19), where the ligand and the protein are
physically separated from each other, also belong to this group.
While in SMD, the ligand is dragged out from the protein using a
moving restraining potential, in umbrella sampling, the path from
the bound to the unbound state is divided in a finite number of
windows, which are independently sampled.
Though these methods have been successfully used to compute

the ligand binding free energy in many cases (20–22), the re-
quirement of knowing in advance the bindingmode hampers amore
general applicability. The intensity of the efforts in developing these
methods reflects both the great potential of these calculations and
their difficulties. In particular, the difficulties arise mainly from the
fact that the ligand/protein binding process is a rare event, difficult
to sample with standard techniques such as molecular dynamics
(MD). Even the most ambitious efforts in this direction, though
revealing precious details of the binding process (23, 24), have not
been able to determine accurately the binding energy. To achieve
this result, the use of enhanced sampling methods is mandatory.
Among the emerging techniques, metadynamics (25) has proven

to be very useful in studying long-timescale processes (26, 27), par-
ticularly in complex ligand/protein binding cases (28–30). Metady-
namics works by adding an external history-dependent potential that
acts on few degrees of freedom, named collective variables (CVs). In
such a way, the sampling is accelerated, and the free-energy surface
(FES) of the process can be calculated from the added potential.
Unfortunately, only a qualitative estimation of the protein–ligand
binding free energy could be obtained for the binding processes
studied so far (28, 31). In fact, once the ligand leaves the binding
pocket, it has difficulty finding its way back, and starts exploring all of
the possible solvated states. These conformations represent a vast
part of the configuration space that cannot be sampled thoroughly in
a limited computation time. Therefore, once out, the ligand does not
again find the binding site, and multiple binding/unbinding events,
which are the key to an accurate determination of the binding free
energy in metadynamics, cannot be observed.
Here, we present a metadynamics-based approach, named

funnel metadynamics (FM), which overcomes all these limi-
tations and allows an accurate estimation of the absolute

Author contributions: V.L., M.B., and M.P. designed research; V.L. performed research;
V.L., M.B., and M.P. contributed new reagents/analytic tools; V.L., M.B., and M.P. analyzed
data; and V.L., M.B., and M.P. wrote the paper.

The authors declare no conflict of interest.
1To whom correspondence may be addressed. E-mail: vittoriolimongelli@gmail.com or
parrinello@phys.chem.ethz.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1303186110/-/DCSupplemental.
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potential of the 
bound state

potential of the 
unbound state

Su is equal to 
πRcyl2

ΔGsite is equal to 0

*

* Allen et al., PNAS (2004); Roux et al., J. Chem. Phys. (2008)

** Limongelli, Bonomi & Parrinello, PNAS (2013) 

Kb = e��Gsite

Z

site

dz e��[W (z)�Wref ] Su . (1)

�G0
b = � 1

�
ln(C0 Kb) , (2)

References:

Funnel-Metadynamics
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potential of the 
bound state

potential of the 
unbound state

Su is equal to 
πRcyl2

ΔGsite is equal to 0

*

* Allen et al., PNAS (2004); Roux et al., J. Chem. Phys. (2008)
Free Energy difference 
between the bound and 

unbound state** Limongelli, Bonomi & Parrinello, PNAS (2013) 

**

Kb = e��Gsite

Z

site

dz e��[W (z)�Wref ] Su . (1)

�G0
b = � 1

�
ln(C0 Kb) , (2)

�G0
b = �G� 1

�
ln(⇡R2

cylC
0) , (3)

Analytical correctionReferences:

Funnel-Metadynamics (FM)



Trypsin/Benzamidine Binding with FM

20

Funnel-Metadynamics code available on my website and GitHub:
https://sites.google.com/view/vittoriolimongelli/software?authuser=0  

Trypsin/Benzamidine Binding with FM

https://sites.google.com/view/vittoriolimongelli/software?authuser=0
https://sites.google.com/view/vittoriolimongelli/software?authuser=0
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Bound Unbound

ΔGb
0 = −8.5 ± 0.7 kcal/mol 

*Talhout et al., Eur. J. Bochem. (2001)
  Katz et al., J. Mol. Biol. (2001)
  Doudou et al., JCTC (2009) 

Previous estimates −5.5 to −9.0 kcal/mol*

�G0
b = �G� 1

�
ln(⇡R2

cylC
0) , (3)

G(A)-G(C) = - 12.3 kcal/mol

3.8 kcal/mol

Ligand Binding Free Energy

Limongelli, Bonomi & Parrinello, PNAS (2013) 
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VAC-FM

funnel is such that the restraint does not act on the ligand
when in the binding site while confining the ligand to a
cylindrical region once outside. One can also look at this
procedure as having imposed an entropic restraint. The net
effect of the cylindrical restraint can be accounted for, leading
to the following formula:

∫π β= − −K R z W z Wd exp( ( ( ) (ref)))b cyl
2

site (5)

where W(z) and its value in the unbound state W(ref) can be
derived from the potential of mean force (PMF) along the
funnel axis Z, while Rcyl is the radius of the cylindrical part of
the funnel potential and πRcyl

2 accounts for the restraining
potential in the unbound state (see ref 14 for details). Finally,
one can calculate the absolute protein−ligand binding free
energy (ΔGb

0) combining eq 4 and eq 5. Due to the funnel
restraint, several back-and-forth events between the bound and
the unbound state are observed during the simulation leading
to the free-energy convergence of the calculation in a shorter
computational time.14,15,33−36

2.3. Variational Approach to Conformational Dynam-
ics Metadynamics. As already discussed, in MetaD
calculations the number of CVs should be kept as small as
possible, since the cost of reconstructing the free energy grows
exponentially with the number of CVs used. This limitation is
particularly severe in protein systems where a slow process
often involves several degrees of freedom. Recently McCarty
and Parrinello developed a variational approach to conforma-
tional dynamics in metadynamics19 that allows combining
several degrees of freedom into a number of CVs that are a
combination of many descriptors. So far this has led to a better
understanding of chemical reactions and folding of small
peptides.37,38

Here we briefly review the steps needed to apply this
procedure. First one identifies a set of N descriptors d R( )k that
one thinks are important for the phenomenon under
investigation. Then one searches for the best CV Rs ( )i that
can be expressed as a weighted linear combination of d R( )k ,
with corresponding coefficients bik:

∑= b dR Rs ( ) ( )i
k

N

ik k
(6)

This is obtained by a variant of time-lagged independent
conformational analysis (TICA) developed in Noe’s group.39,40

In this setting, one computes the time-lagged covariance matrix
(C(τ)) defined as

τ= ⟨ ⟩C r r(0) ( )mn m n (7)

where rk(τ) = d(τ) k − ⟨dk(τ)⟩. We then determine the bik
coefficients by solving the generalized eigenvalue equation:

τ λ=C b C b( ) (0)i i i (8)

where λi is the ith eigenvalue, τC( ) is the time-lagged
covariance matrix, and C(0) is the covariance matrix at time
zero. In the variant of TICA proposed by Noe’s group,39,40

they assume a long trajectory which spontaneously transits
between metastable states. McCarty and Parrinello19 noticed
that a similar procedure can be applied from a MetaD
trajectory, provided that the MetaD time scale is properly
rescaled, as follows:

τ = β − td e dV c tR( (s( )) ( ))t (9)

For the purpose of studying a ligand unbinding transition, the
eigenvectors of the eigenvalue equation obtained from a
MetaD trajectory, correspond to the slowest decaying modes
and can be used as CVs in the production MetaD
simulation.19,41

2.4. Ligand Unbinding Rate (koff) from Infrequent
Metadynamics. Inspired by Voter42 and Grubmul̈ler,43 in a
recent study Tiwary and Parrinello44 introduced the infrequent
metadynamics (InMetaD) framework illustrating how MetaD
could be used to calculate transition rates of activated
processes. The assumptions of this method are that (i) there
is no bias deposited in the transition state ensemble (TSE)
region and (ii) that the biased CVs are able to distinguish
between relevant metastable states. This goal can be achieved
by using an infrequent bias deposition which reduces the
probability to add bias to the short transition time where the
system is in the TSE region.44 Metadynamics accelerates the
dynamics by a factor α, given by a running average obtained
through MetaD as

α = ⟨ ⟩βe V s t
V

( , )M (10)

where tM is the metadynamics escape time, s is the biased
collective variable at time tM, β is the inverse of kBT and
V(s,tM) is the bias deposited at time tM. The real time t can be
related to tM via eq 11.

α=t tM (11)

A rigorous quantitative way to assess the method’s assumption
is to perform a Kolmogorov−Smirnov statistical test.45,46 This
effectively measures if the M observed escape times follow a
Poisson distribution, as expected in a rare event scenario.

2.5. Protocol. In this section we present a schematic
description of our protocol. The protein and water are
modeled using the Amber-14SB and TIP3P classical force
fields, while the ligand, using the Amber GAFF library.47,48 At
variance with our previous studies,14,23 here we use a new
benzamidine force field parametrization based on quantum
mechanics calculations. These calculations show that in the
ground state of the isolated benzamidine the amidine group

Figure 1. (a) Cartoon representation of a ligand (L) binding to a
protein (P) . (b) Funnel restraining potential illustrated in blue, along
with its parameters. More specifically Z is the exit binding path axis,
Zcc is the distance along the axis Z, where the cone restraining
potential turns into a cylindrical shape, Rcyl is the radius of the
cylinder, and α is the angle defining the cone’s amplitude.
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funnel is such that the restraint does not act on the ligand
when in the binding site while confining the ligand to a
cylindrical region once outside. One can also look at this
procedure as having imposed an entropic restraint. The net
effect of the cylindrical restraint can be accounted for, leading
to the following formula:

∫π β= − −K R z W z Wd exp( ( ( ) (ref)))b cyl
2

site (5)

where W(z) and its value in the unbound state W(ref) can be
derived from the potential of mean force (PMF) along the
funnel axis Z, while Rcyl is the radius of the cylindrical part of
the funnel potential and πRcyl

2 accounts for the restraining
potential in the unbound state (see ref 14 for details). Finally,
one can calculate the absolute protein−ligand binding free
energy (ΔGb

0) combining eq 4 and eq 5. Due to the funnel
restraint, several back-and-forth events between the bound and
the unbound state are observed during the simulation leading
to the free-energy convergence of the calculation in a shorter
computational time.14,15,33−36

2.3. Variational Approach to Conformational Dynam-
ics Metadynamics. As already discussed, in MetaD
calculations the number of CVs should be kept as small as
possible, since the cost of reconstructing the free energy grows
exponentially with the number of CVs used. This limitation is
particularly severe in protein systems where a slow process
often involves several degrees of freedom. Recently McCarty
and Parrinello developed a variational approach to conforma-
tional dynamics in metadynamics19 that allows combining
several degrees of freedom into a number of CVs that are a
combination of many descriptors. So far this has led to a better
understanding of chemical reactions and folding of small
peptides.37,38

Here we briefly review the steps needed to apply this
procedure. First one identifies a set of N descriptors d R( )k that
one thinks are important for the phenomenon under
investigation. Then one searches for the best CV Rs ( )i that
can be expressed as a weighted linear combination of d R( )k ,
with corresponding coefficients bik:

∑= b dR Rs ( ) ( )i
k
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ik k
(6)

This is obtained by a variant of time-lagged independent
conformational analysis (TICA) developed in Noe’s group.39,40

In this setting, one computes the time-lagged covariance matrix
(C(τ)) defined as

τ= ⟨ ⟩C r r(0) ( )mn m n (7)

where rk(τ) = d(τ) k − ⟨dk(τ)⟩. We then determine the bik
coefficients by solving the generalized eigenvalue equation:

τ λ=C b C b( ) (0)i i i (8)

where λi is the ith eigenvalue, τC( ) is the time-lagged
covariance matrix, and C(0) is the covariance matrix at time
zero. In the variant of TICA proposed by Noe’s group,39,40

they assume a long trajectory which spontaneously transits
between metastable states. McCarty and Parrinello19 noticed
that a similar procedure can be applied from a MetaD
trajectory, provided that the MetaD time scale is properly
rescaled, as follows:

τ = β − td e dV c tR( (s( )) ( ))t (9)

For the purpose of studying a ligand unbinding transition, the
eigenvectors of the eigenvalue equation obtained from a
MetaD trajectory, correspond to the slowest decaying modes
and can be used as CVs in the production MetaD
simulation.19,41

2.4. Ligand Unbinding Rate (koff) from Infrequent
Metadynamics. Inspired by Voter42 and Grubmul̈ler,43 in a
recent study Tiwary and Parrinello44 introduced the infrequent
metadynamics (InMetaD) framework illustrating how MetaD
could be used to calculate transition rates of activated
processes. The assumptions of this method are that (i) there
is no bias deposited in the transition state ensemble (TSE)
region and (ii) that the biased CVs are able to distinguish
between relevant metastable states. This goal can be achieved
by using an infrequent bias deposition which reduces the
probability to add bias to the short transition time where the
system is in the TSE region.44 Metadynamics accelerates the
dynamics by a factor α, given by a running average obtained
through MetaD as

α = ⟨ ⟩βe V s t
V

( , )M (10)

where tM is the metadynamics escape time, s is the biased
collective variable at time tM, β is the inverse of kBT and
V(s,tM) is the bias deposited at time tM. The real time t can be
related to tM via eq 11.

α=t tM (11)

A rigorous quantitative way to assess the method’s assumption
is to perform a Kolmogorov−Smirnov statistical test.45,46 This
effectively measures if the M observed escape times follow a
Poisson distribution, as expected in a rare event scenario.

2.5. Protocol. In this section we present a schematic
description of our protocol. The protein and water are
modeled using the Amber-14SB and TIP3P classical force
fields, while the ligand, using the Amber GAFF library.47,48 At
variance with our previous studies,14,23 here we use a new
benzamidine force field parametrization based on quantum
mechanics calculations. These calculations show that in the
ground state of the isolated benzamidine the amidine group

Figure 1. (a) Cartoon representation of a ligand (L) binding to a
protein (P) . (b) Funnel restraining potential illustrated in blue, along
with its parameters. More specifically Z is the exit binding path axis,
Zcc is the distance along the axis Z, where the cone restraining
potential turns into a cylindrical shape, Rcyl is the radius of the
cylinder, and α is the angle defining the cone’s amplitude.
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has a nonplanar torsion angle with respect to the benzene ring.
Similar results have been found in a previous study by
Pophristic et al.49 and through X-ray diffraction by Liebschner
et al.50 All of our simulations start from a solvated and
equilibrated configuration of the benzamidine−trypsin X-ray
crystral structure (Protein Data Bank (PDB) ID, 2OXS).
Initially, we define a simple CV, namely, the distance between
the ligand C7 carbon and the D189 Cγ of the pocket. Then, we
run a 500 ns FM simulation which enhances the fluctuations of
the binding transition. Using this FM trajectory, we perform
the VAC-MetaD optimization procedure implemented in the
PLUMED software51 to generate the CVs biased in a 280 ns
VAC-FM production run. Both simulations are performed at
room temperature and atmospheric pressure. For more
information about the system preparation, we refer the
interested reader to the Supporting Information (SI). For the
sake of clarity, we describe below the VAC-MetaD procedure
in the following steps.
Made wise by the many studies showing that direct ligand/

protein contacts, as well as the solvation and the orientation of
the ligand, are involved in the stability of the intermediate
states,14,18,23,52 we define a basis set of descriptors for ligand/
protein binding (Npr/lig,Wpock,αβ(θ),Wlig). In particular, Npr/lig
corresponds to the protein−ligand contacts, Wpock corresponds
to the number of water molecules in the pocket, αβ(θ) is a
transformation of the torsion angle describing the rotation of
the ligand relative to the protein binding site, and Wlig is the
number of contacts between water molecules and the ligand.
For more details see SI Table S1. After defining the basis set,
we perform a VAC-MetaD optimization on the first 120 ns of
the preliminary FM simulation to identify the eigenvectors and
eigenvalues associated with the slowest modes of the system.
In particular, the slowest modes of the system are the ones

whose eigenvalues show a spectral gap with respect to the
decay of the rest of the eigenvalues.19,53 In Figure 2 it is shown

that the biggest spectral gap is encoded in the first eigenvector.
Biasing only the first eigenvector proved difficult to reach
convergence of the free energy (see Figure S1). The eigenvalue
decay of the second eigenvector, while faster than the first one,
also shows a spectral gap with respect to the decay of the third
and fourth eigenvalues (see Figure 2). Therefore, it seems
natural to include the second eigenvector as CV. The two
optimal CVs obtained from the VAC-MetaD analysis described
above are s1 = −0.38 Npr/lig + 0.78Wpock − 0.19αβ(θ) + 0.45
Wlig and s2 = 0.01Npr/lig − 0.85Wpock − 0.30αβ(θ) + 0.44Wlig.
The most striking feature of these two CVs is the dominant

role played by water, both in pocket hydration/dehydration
and in ligand solvation/desolvation.

3. RESULTS
In the following paragraphs we address the binding mechanism
of benzamidine/trypsin complex, the convergence speed
obtained using FM with VAC-MetaD optimized CV and
finally the unbinding rate.

3.1. Free Energy. First, we perform a production run of
280 ns FM simulation, biasing two CVs s1 and s2 obtained
earlier. Using these two CVs we computed the corresponding
free-energy surface (see Figure 3a). Three stable bound states
are found, A, P, and B (see Figure 3b). The first corresponds to
the crystal structure, the second to a presolvated state, and the
third to a rotated presolvated still bound state. A detailed
description of the stable bound states follows.

Minimum A. Minimum A corresponds to the crystal
structure. In this minimum the ligand’s diamino group forms
direct hydrogen bonds with the hydrogen bond accepting
groups of the negatively charged D189, polar S190, and G219.
Moreover, this minimum is stabilized by a hydrogen bond
network formed by a structural water, bridging the interactions
of Y228, D189, and S190. Finally, the ligand’s aromatic ring
forms hydrophobic contacts with V213, C191, and W215.
These interactions are in agreement with previous stud-
ies.14,20,23,54,55

Minimum P. This minimum corresponds to a presolvated
state. In P, the ligand is rotated compared to state A, with its
diamino group exposed to solution. The phenyl ring of the
ligand is sandwiched between the Cα of W215 and C191. It
forms a direct hydrogen bond with G216 while at the vicinity
of the triad G216, S217, and G219. Minimum P has been also
discussed in ref 23, where it is also called P, and it is the same
as state P2 of ref 54.

Minimum B. This minimum corresponds to a rotated
presolvated bound state. In B, the ligand is rotated compared
to minimum A and sits just outside the pocket. The ligand’s
diamino group forms a direct H-bond with the negatively
charged D102 and S214. The ligand is sandwiched between
W215 and H23 forming π-stacking interactions.56 Finally, a
water forms a hydrogen bond network between the diamino
group of the ligand, Y94, and D102. This mimimum, is very
similar to state P12 and/or TS2 in ref 54. The combination of
these interactions is allowed only by a rotated torsion and can
be captured by the new parametrization of the ligand.

Binding Free-Energy Surface. The representation of the
BFES shown in Figure 3 does not clearly describe the position
of these states relative to the unbound state region. Thus, we
represent the free-energy landscape as a function of the same
two variables used in our previous study.14 One, Z, gives the
ligand’s center of mass position projected along the funnel axis.
The other, Θ, is the orientation of the ligand relative to the
binding site (see Table S1). In this BFES representation (see
Figure 4a), A, B, and P can also be clearly identified. Here, it is
possible to distinguish two additional local minima A and AP
in which most of the ligand/protein interactions are mediated
by water molecules. These minima represent transient and
preliminary binding poses that easily evolve to the energetically
most stable states A and P within 20 ns of unbiased MD
calculations. The interested reader can find more information
about these minima in the SI.

Role of Water. It is known that explicit protein/water/
ligand H-bond bridging interactions can increase the stability

Figure 2. Eigenvalues decay as a function of lag time. The colors red,
green, blue, and purple eigenvalue curves correspond to the decay of
the first, second, third, and fourth eigenvectors, respectively.
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has a nonplanar torsion angle with respect to the benzene ring.
Similar results have been found in a previous study by
Pophristic et al.49 and through X-ray diffraction by Liebschner
et al.50 All of our simulations start from a solvated and
equilibrated configuration of the benzamidine−trypsin X-ray
crystral structure (Protein Data Bank (PDB) ID, 2OXS).
Initially, we define a simple CV, namely, the distance between
the ligand C7 carbon and the D189 Cγ of the pocket. Then, we
run a 500 ns FM simulation which enhances the fluctuations of
the binding transition. Using this FM trajectory, we perform
the VAC-MetaD optimization procedure implemented in the
PLUMED software51 to generate the CVs biased in a 280 ns
VAC-FM production run. Both simulations are performed at
room temperature and atmospheric pressure. For more
information about the system preparation, we refer the
interested reader to the Supporting Information (SI). For the
sake of clarity, we describe below the VAC-MetaD procedure
in the following steps.
Made wise by the many studies showing that direct ligand/

protein contacts, as well as the solvation and the orientation of
the ligand, are involved in the stability of the intermediate
states,14,18,23,52 we define a basis set of descriptors for ligand/
protein binding (Npr/lig,Wpock,αβ(θ),Wlig). In particular, Npr/lig
corresponds to the protein−ligand contacts, Wpock corresponds
to the number of water molecules in the pocket, αβ(θ) is a
transformation of the torsion angle describing the rotation of
the ligand relative to the protein binding site, and Wlig is the
number of contacts between water molecules and the ligand.
For more details see SI Table S1. After defining the basis set,
we perform a VAC-MetaD optimization on the first 120 ns of
the preliminary FM simulation to identify the eigenvectors and
eigenvalues associated with the slowest modes of the system.
In particular, the slowest modes of the system are the ones

whose eigenvalues show a spectral gap with respect to the
decay of the rest of the eigenvalues.19,53 In Figure 2 it is shown

that the biggest spectral gap is encoded in the first eigenvector.
Biasing only the first eigenvector proved difficult to reach
convergence of the free energy (see Figure S1). The eigenvalue
decay of the second eigenvector, while faster than the first one,
also shows a spectral gap with respect to the decay of the third
and fourth eigenvalues (see Figure 2). Therefore, it seems
natural to include the second eigenvector as CV. The two
optimal CVs obtained from the VAC-MetaD analysis described
above are s1 = −0.38 Npr/lig + 0.78Wpock − 0.19αβ(θ) + 0.45
Wlig and s2 = 0.01Npr/lig − 0.85Wpock − 0.30αβ(θ) + 0.44Wlig.
The most striking feature of these two CVs is the dominant

role played by water, both in pocket hydration/dehydration
and in ligand solvation/desolvation.

3. RESULTS
In the following paragraphs we address the binding mechanism
of benzamidine/trypsin complex, the convergence speed
obtained using FM with VAC-MetaD optimized CV and
finally the unbinding rate.

3.1. Free Energy. First, we perform a production run of
280 ns FM simulation, biasing two CVs s1 and s2 obtained
earlier. Using these two CVs we computed the corresponding
free-energy surface (see Figure 3a). Three stable bound states
are found, A, P, and B (see Figure 3b). The first corresponds to
the crystal structure, the second to a presolvated state, and the
third to a rotated presolvated still bound state. A detailed
description of the stable bound states follows.

Minimum A. Minimum A corresponds to the crystal
structure. In this minimum the ligand’s diamino group forms
direct hydrogen bonds with the hydrogen bond accepting
groups of the negatively charged D189, polar S190, and G219.
Moreover, this minimum is stabilized by a hydrogen bond
network formed by a structural water, bridging the interactions
of Y228, D189, and S190. Finally, the ligand’s aromatic ring
forms hydrophobic contacts with V213, C191, and W215.
These interactions are in agreement with previous stud-
ies.14,20,23,54,55

Minimum P. This minimum corresponds to a presolvated
state. In P, the ligand is rotated compared to state A, with its
diamino group exposed to solution. The phenyl ring of the
ligand is sandwiched between the Cα of W215 and C191. It
forms a direct hydrogen bond with G216 while at the vicinity
of the triad G216, S217, and G219. Minimum P has been also
discussed in ref 23, where it is also called P, and it is the same
as state P2 of ref 54.

Minimum B. This minimum corresponds to a rotated
presolvated bound state. In B, the ligand is rotated compared
to minimum A and sits just outside the pocket. The ligand’s
diamino group forms a direct H-bond with the negatively
charged D102 and S214. The ligand is sandwiched between
W215 and H23 forming π-stacking interactions.56 Finally, a
water forms a hydrogen bond network between the diamino
group of the ligand, Y94, and D102. This mimimum, is very
similar to state P12 and/or TS2 in ref 54. The combination of
these interactions is allowed only by a rotated torsion and can
be captured by the new parametrization of the ligand.

Binding Free-Energy Surface. The representation of the
BFES shown in Figure 3 does not clearly describe the position
of these states relative to the unbound state region. Thus, we
represent the free-energy landscape as a function of the same
two variables used in our previous study.14 One, Z, gives the
ligand’s center of mass position projected along the funnel axis.
The other, Θ, is the orientation of the ligand relative to the
binding site (see Table S1). In this BFES representation (see
Figure 4a), A, B, and P can also be clearly identified. Here, it is
possible to distinguish two additional local minima A and AP
in which most of the ligand/protein interactions are mediated
by water molecules. These minima represent transient and
preliminary binding poses that easily evolve to the energetically
most stable states A and P within 20 ns of unbiased MD
calculations. The interested reader can find more information
about these minima in the SI.

Role of Water. It is known that explicit protein/water/
ligand H-bond bridging interactions can increase the stability

Figure 2. Eigenvalues decay as a function of lag time. The colors red,
green, blue, and purple eigenvalue curves correspond to the decay of
the first, second, third, and fourth eigenvectors, respectively.
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funnel is such that the restraint does not act on the ligand
when in the binding site while confining the ligand to a
cylindrical region once outside. One can also look at this
procedure as having imposed an entropic restraint. The net
effect of the cylindrical restraint can be accounted for, leading
to the following formula:

∫π β= − −K R z W z Wd exp( ( ( ) (ref)))b cyl
2

site (5)

where W(z) and its value in the unbound state W(ref) can be
derived from the potential of mean force (PMF) along the
funnel axis Z, while Rcyl is the radius of the cylindrical part of
the funnel potential and πRcyl

2 accounts for the restraining
potential in the unbound state (see ref 14 for details). Finally,
one can calculate the absolute protein−ligand binding free
energy (ΔGb

0) combining eq 4 and eq 5. Due to the funnel
restraint, several back-and-forth events between the bound and
the unbound state are observed during the simulation leading
to the free-energy convergence of the calculation in a shorter
computational time.14,15,33−36

2.3. Variational Approach to Conformational Dynam-
ics Metadynamics. As already discussed, in MetaD
calculations the number of CVs should be kept as small as
possible, since the cost of reconstructing the free energy grows
exponentially with the number of CVs used. This limitation is
particularly severe in protein systems where a slow process
often involves several degrees of freedom. Recently McCarty
and Parrinello developed a variational approach to conforma-
tional dynamics in metadynamics19 that allows combining
several degrees of freedom into a number of CVs that are a
combination of many descriptors. So far this has led to a better
understanding of chemical reactions and folding of small
peptides.37,38

Here we briefly review the steps needed to apply this
procedure. First one identifies a set of N descriptors d R( )k that
one thinks are important for the phenomenon under
investigation. Then one searches for the best CV Rs ( )i that
can be expressed as a weighted linear combination of d R( )k ,
with corresponding coefficients bik:

∑= b dR Rs ( ) ( )i
k

N

ik k
(6)

This is obtained by a variant of time-lagged independent
conformational analysis (TICA) developed in Noe’s group.39,40

In this setting, one computes the time-lagged covariance matrix
(C(τ)) defined as

τ= ⟨ ⟩C r r(0) ( )mn m n (7)

where rk(τ) = d(τ) k − ⟨dk(τ)⟩. We then determine the bik
coefficients by solving the generalized eigenvalue equation:

τ λ=C b C b( ) (0)i i i (8)

where λi is the ith eigenvalue, τC( ) is the time-lagged
covariance matrix, and C(0) is the covariance matrix at time
zero. In the variant of TICA proposed by Noe’s group,39,40

they assume a long trajectory which spontaneously transits
between metastable states. McCarty and Parrinello19 noticed
that a similar procedure can be applied from a MetaD
trajectory, provided that the MetaD time scale is properly
rescaled, as follows:

τ = β − td e dV c tR( (s( )) ( ))t (9)

For the purpose of studying a ligand unbinding transition, the
eigenvectors of the eigenvalue equation obtained from a
MetaD trajectory, correspond to the slowest decaying modes
and can be used as CVs in the production MetaD
simulation.19,41

2.4. Ligand Unbinding Rate (koff) from Infrequent
Metadynamics. Inspired by Voter42 and Grubmul̈ler,43 in a
recent study Tiwary and Parrinello44 introduced the infrequent
metadynamics (InMetaD) framework illustrating how MetaD
could be used to calculate transition rates of activated
processes. The assumptions of this method are that (i) there
is no bias deposited in the transition state ensemble (TSE)
region and (ii) that the biased CVs are able to distinguish
between relevant metastable states. This goal can be achieved
by using an infrequent bias deposition which reduces the
probability to add bias to the short transition time where the
system is in the TSE region.44 Metadynamics accelerates the
dynamics by a factor α, given by a running average obtained
through MetaD as

α = ⟨ ⟩βe V s t
V

( , )M (10)

where tM is the metadynamics escape time, s is the biased
collective variable at time tM, β is the inverse of kBT and
V(s,tM) is the bias deposited at time tM. The real time t can be
related to tM via eq 11.

α=t tM (11)

A rigorous quantitative way to assess the method’s assumption
is to perform a Kolmogorov−Smirnov statistical test.45,46 This
effectively measures if the M observed escape times follow a
Poisson distribution, as expected in a rare event scenario.

2.5. Protocol. In this section we present a schematic
description of our protocol. The protein and water are
modeled using the Amber-14SB and TIP3P classical force
fields, while the ligand, using the Amber GAFF library.47,48 At
variance with our previous studies,14,23 here we use a new
benzamidine force field parametrization based on quantum
mechanics calculations. These calculations show that in the
ground state of the isolated benzamidine the amidine group

Figure 1. (a) Cartoon representation of a ligand (L) binding to a
protein (P) . (b) Funnel restraining potential illustrated in blue, along
with its parameters. More specifically Z is the exit binding path axis,
Zcc is the distance along the axis Z, where the cone restraining
potential turns into a cylindrical shape, Rcyl is the radius of the
cylinder, and α is the angle defining the cone’s amplitude.
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=

of the bound pose by several kilocalories per mole.18 In the
benzamidine system, it is known14 and verified here that state
A is stabilized by a hydrogen bond network formed by a
structural water bridging the interactions of Y228, D189, and
S190. Given such a positively charged pocket,57 it makes sense
that upon breakage of some protein−ligand interactions of
minimum A, they will be replaced by water mediated H-bonds
between the ligand and the protein, thus forming nearby
minima A′ and AP (see Figure S2). Here, the stability of state
P reflects this balance of solvation and direct protein−ligand
forces. Importantly, at all stages of binding, water is involved in
the process, be it from a ligand desolvation point of view or
from a structural water inside the pocket point of view.
3.2. Fast Prediction of the Binding Fee Energy. From

the projection of the BFES on the Z axis of the funnel (see
Figure 4b), we can compute the absolute protein−ligand
binding free energy ΔGb

0 whichafter the analytical correction
in eq 5 corresponding to 3.8 kcal/molequals −6.7 ± 0.4
kcal/mol, in embarrassing agreement with the experimentally
reported value of −6.4 to −7.3 kcal/mol.58,59 It must be also
underlined that the VAC-MetaD optimized CVs simulation
converges smoothly to this value, while the FM with
suboptimal CVs after 500 ns still exhibits relative large
fluctuation (see Figure 4c). Regarding the technical aspects of
this calculation we refer the interested reader to the SI.
Finally, a remarkable finding is that the main features of the

BFES as the local minima of the bound state are already
captured from the first 60 ns of the VAC-MetaD optimized
CVs FM simulation (see Figure S7d), posing a great
improvement compared to the FM with suboptimal CVs
where one would have to simulate at least 240 ns (see Figure
S7b) to obtain a ΔGb

0 value in the right ball park.

3.3. Unbinding Rate. Using 20 simulations initiated in
state A, we perform metadynamics with infrequent deposition
of the bias (see SI) and stop the simulation once the
trajectories reach the unbound state (Z > 2 nm). The
associated koff found is 4176 ± 324 s−1, which given the
uncertainties intrinsic to these types of calculations, can be
considered as a good agreement with the experiment koffexp of
600 ± 300.60 Note that the p-value of the KS test performed
was 0.77, indicating the quality of the optimized CVs (see
Figure S8). The different result compared to ref 23 can be
explained by the new ligands torsion potential used in this
study, which allows a much easier rotation of the ligands
diamino group. In so doing, the benzamidine can disentangle
itself from the interactions formed at the lowest minimum A
and reach the solvated state more rapidly.

4. DISCUSSION
In this study we combined for the first time variational
approach to conformational dynamics with funnel metady-
namics, in order to accurately predict the binding energy,
binding mechanism, and unbinding rate of the benzamidine−
trypsin complex. In this way we find ligand and pocket
solvation/desolvation to be the slow degrees of freedom by
looking at the slowly decaying eigenvectors of the VAC-
MetaD, which when biased significantly accelerate the
convergence of the bound state and the overall BFES,
compared to FM with suboptimal CVs. The estimated absolute
binding free energy of FM using optimized CVs is in excellent
agreement with experiments. In addition it gives a better
resolved BFESincluding more resolved water rich local
minima A′ and AP compared to the FM simulation of
suboptimal CVs. Moreover, when VAC-MetaD optimized CVs
are used with the infrequent metadynamics scheme, it predicts

Figure 3. (a) Free-energy surface as a function of the two biased eigenvectors s1 and s2. where in white the stable states and (b) detailed
description of the bound poses.
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The ability to predict the mechanisms and the associated rate
constants of protein–ligand unbinding is of great practical impor-
tance in drug design. In this work we demonstrate how a recently
introduced metadynamics-based approach allows exploration of
the unbinding pathways, estimation of the rates, and determina-
tion of the rate-limiting steps in the paradigmatic case of the tryp-
sin–benzamidine system. Protein, ligand, and solvent are described
with full atomic resolution. Using metadynamics, multiple unbind-
ing trajectories that start with the ligand in the crystallographic
binding pose and end with the ligand in the fully solvated state
are generated. The unbinding rate koff is computed from the mean
residence time of the ligand. Using our previously computed binding
affinity we also obtain the binding rate kon. Both rates are in agree-
ment with reported experimental values. We uncover the complex
pathways of unbinding trajectories and describe the critical rate-
limiting steps with unprecedented detail. Our findings illuminate
the role played by the coupling between subtle protein backbone
fluctuations and the solvation by water molecules that enter the
binding pocket and assist in the breaking of the shielded hydrogen
bonds. We expect our approach to be useful in calculating rates for
general protein–ligand systems and a valid support for drug design.

protein–ligand unbinding | kinetics | enhanced sampling | drug design

Understanding the thermodynamics and kinetics of protein–
ligand interactions is of paramount relevance in the early

stages of drug discovery (1–3). So far the major emphasis has been
placed on predicting the most likely binding pose as determined by
the highest binding affinity (4, 5). In contrast, it has not been
possible to predict the pathways for unbinding and the associated
rates. However, it is by now well-recognized that one of the most
pertinent factors for sustained drug efficacy and safety is not just
its affinity, but possibly even more so, the mean lifetime of the
protein–ligand complex (1–3). The latter property is strictly re-
lated to the time during which the ligand remains in the binding
site (1, 2), and is typically expressed by its inverse, the dissociation
rate koff (2). In principle koff should be amenable to calculations
through all-atom molecular dynamics (MD) simulations. These
simulations could give detailed and useful insights into the atomic
interactions at work during unbinding, especially in the ephemeral
but kinetically most relevant transition state ensemble (TSE) (6, 7).
Such information is of great value in designing modifications of the
ligand that might improve its pharmaceutical properties.
However, despite the potential of MD simulations no such

calculation has yet been reported. This is a consequence of the
limited timescales of MD simulations. Even with the most mod-
ern purpose-built supercomputers or massive distributed com-
puting, one can barely reach the timescale of milliseconds (3).
Unfortunately most of the reported ligand–protein dissociation
times far exceed this timescale (2). These timescales can be
reached either by transition path sampling methods (8, 9), quasi-
classical approximations (10), by the construction of Markov state
models (11, 12), or through carefully designed enhanced sampling
methods (8, 13–30) that make accessible the timescale of seconds
and beyond in a controlled and accurate way. The enhanced

sampling method we use in this work is based on metadynamics
(13–15), which has been widely and successfully applied to a variety
of systems including complex protein–ligand systems (25–30), and
has been rigorously proven to converge to the correct free-energy
surface (31, 32).
Recently, we have extended the scope of metadynamics by

showing that it can also be used to recover kinetic information (15).
Furthermore, we showed that by using an a posteriori statistical
analysis (33) one can also establish the reliability of the kinetics
thus generated. The use of metadynamics for obtaining kinetic
information is still in its infancy, however its usefulness has been
tested by us and other groups in a range of systems (15, 33–36).
In this work, we demonstrate that the scope of the method

reported in ref. 15 can be extended to study protein–ligand disso-
ciation pathways and to determine in an accurate way the ligand
unbinding rates. We reach well into the hundreds of milliseconds
regime and longer, maintaining at the same time full atomic reso-
lution for protein, ligand, and solvent. Specifically, we study the
unbinding of the inhibitor benzamidine from trypsin, a serine pro-
tease protein (27, 37, 38) using classical force fields (39, 40). Using
our acceleration method (15, 33) we are able to harness 21 in-
dependent successful unbinding trajectories in which the ligand goes
from the bound to the fully unbound state. We find that one of the
most distinctive features of the unbinding process is the role played
by the water molecules (41, 42). In particular, the solvent promotes
unbinding by assisting in the breakage of shielded hydrogen bonds
through the formation of water bridge interactions (41).
From the analysis of the unbinding trajectories we find that

along the unbinding pathways the ligand rests for times ranging
from nanoseconds to milliseconds in a number of intermediate
structures. We calculate the rates for all possible transitions

Significance

A crucial factor for drug efficacy is not just the binding affinity,
but also the mean residence time in the binding pocket, usually
quantified by its inverse, koff. This is an important parameter
that regulates the time duringwhich the drug is active. Whereas
the calculation of the binding affinity is by now routine, the
calculation of koff has proven more challenging because the
timescales involved far exceed the limits of standard molecular
dynamics simulation. We propose a metadynamics-based strat-
egy that allows reaching timescales of seconds, and estimate
koff along with unbinding pathways and associated dynamical
bottlenecks. The protocol is exemplified for trypsin–benzami-
dine unbinding. This work is a step towards a more effective
computer-based drug design.
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induced-fit mechanism, that requires the 
system to pass through the R*L and RL states 
and to surmount two distinct transition 
states (R*L‡ and RL‡) before the bound 
drug is released from the target4,5. Thus, the 
retrograde induced-fit mechanism creates 
multiple kinetic and structural barriers to 
drug dissociation (FIG. 3a). Any structural 
changes to the drug molecule that strengthen 
interactions with specific molecular features 
of the binding pocket — in any of these 
varied conformational states — will augment 
the drug–target residence time. Hence, 
medicinal chemistry efforts that account 
for the conformational dynamics associated 
with the retrograde induced-fit mechanism 
can powerfully optimize residence time.

A recent study provides some 
structural insight into retrograde 
induced-fit dissociation. Tiwary et al.26 
used a relatively new, all-atom molecular 
dynamics simulation method (the 
metadynamics-based approach) to explore 
the unbinding pathways and accompanying 
dissociation rate constants of the trypsin–
benzamidine binary complex. This analysis 
defined several discrete, stable, ligand-bound 
states along the unbinding trajectory of the 
complex. States A and B represent alternative 
poses of the trypsin–benzamidine complex 
in which the ligand is largely shielded 
from bulk solvent. There is no pathway by 
which the ligand can dissociate directly 
from states A or B. Instead, the complex 
must go through an intermediate state, P, 
wherein water molecules interact directly 
with the bound ligand and the changes 
in orientation of the ligand allow greater 
interaction between charged groups on the 
benzamidine and solvent. It is only from this 
P state that the system can then fully displace 

tight binding and long-lived nature of the 
compound–COX2 binary complex. More 
recently, in a study of the basis of imatinib 
selectivity for ABL over SRC kinases, it was 
found that all ancestral and modern kinases 
bound imatinib by a common, induced-fit 
mechanism (as in FIG. 1c). The value of k2 
was largely invariant for imatinib binding 
to all of the kinases studied, but the reverse 
isomerization rate (k4) was rate limiting 
to overall drug dissociation. A systematic 
change in the conformational equilibrium 
from R*L to RL across the evolutionary 
tree from ABL to SRC was found, which 
was defined by a gradual decrease in k3 
(the forward isomerization rate) and a much 
greater increase in the reverse isomerization 
rate (k4). It was concluded that an evolution 
of induced-fit binding was essential for 
imatinib selectivity, with the evolutionary 
trajectory moving towards ABL and away 
from SRC binding.

Traditionally, the selectivity of a drug 
for its intended target is quantified by the 
ratio of IC50 or Kd values for off-target 
binding over that for binding to the 
intended target. However, this definition 
of selectivity is a static view and does not 
account for the duration of drug residence 
on the target relative to that on off-target 
macromolecules1–3,5. It is important to note 
that modest off-target interactions are 
facilitated by high concentrations of drug 
molecules in the systemic circulation. As the 
circulating drug concentration wanes with 
time after dosing, so does the opportunity 
for engaging target and off-target 
macromolecules. If the drug demonstrates 
a long residence time on its intended 
target that surpasses its pharmacokinetic 
lifetime in circulation, then the selectivity 

the benzamidine to form the unbound state 
S1. This ligand binding-capable unbound 
state exists in equilibrium with another 
unbound state, S2, which is incapable of 
binding a ligand. Flux simulations indicated 
that 84% of the time the system dissociates 
with the following trajectory26: state A first 
transitions to state B, which then goes to 
state P, before the system releases the ligand 
to form state S1, which is in equilibrium with 
state S2 (FIG. 3b).

The individual rate constants (k1 to k4) 
of the induced-fit binding and retrograde 
induced-fit dissociation models can be 
affected differently by changes in ligand 
structure across a pharmacophore series, 
such that exclusive measurement of Kd 
values, without concomitant measurement 
of residence time, can lead to an incomplete 
understanding of structure–activity 
relationships. Similarly, the binding of a 
specific ligand (that is, a drug molecule) to 
various macromolecules can be influenced 
by the differential impact of protein 
structure on each of the four rate constants 
of induced-fit binding and dissociation, to 
affect target selectivity in distinct ways. For 
example, compounds that selectively bound 
to COX2, relative to COX1, elicited their 
isozyme selectivity due to an induced-fit 
binding mechanism for COX2 (REFS 8). 
Representative compounds from two distinct 
chemical series bound to both COX1 and 
COX2 with essentially equal values of k1 
and k2. The binding of compounds to COX1 
could be described by a simple one-step 
binding–dissociation model. By contrast, 
the binding of compounds to COX2 was 
best described by the two-step induced-fit 
binding–dissociation model. A slow reverse 
isomerization rate (k4) resulted in the 

Figure 2 | Drug affinity (target potency) is often driven by drug–target 
residence time. Correlation between the dissociation rate constant  
(k

off
; orange circles) or association rate constant (k

on
; green circles) with 

the equilibrium dissociation constant (K
d
) for biotin binding to wild‑type 

and mutant forms of streptavidin16 (part a), saquinavir binding to wild‑
type and resistant mutants of HIV protease17 (part b), and a series of  
aminonucleoside inhibitors binding to the protein methyltransferase 
DOT1L18 (part c).
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and the hypersurface �(R) = �⇤ defines the dividing sur-
face which also contains the transition state (TS) [5, 16].
Under commonly made assumptions [8] we can write the
mean transition time ⌧ over the barrier into the other
state as:

⌧ =
1

!

Z0

Z⇤
0

=
1

!

R
��⇤ dRe��U(R)

R
�=�⇤ dRe��U(R)

(1)

where ! is a characteristic molecular frequency of the sys-
tem and  is a transmission coe�cient accounting for TS
recrossing events [5, 8, 16]. Z0, Z⇤

0 are partition functions
for the system confined to the first basin and to the hy-
persurface � = �⇤ respectively with averages performed
over the Boltzmann ensemble, U(R) is the interaction
potential, and � = 1

kBT is the inverse of temperature
multiplied by the Boltzmann constant kB . For  = 1,
Eq. (1) is equivalent to the result of transition state the-
ory [16]. But no such assumption is needed here.

Let us now assume that we can perform a metadynam-
ics run in which by accumulating bias against visited
states we gradually enhance the probability of visiting
� = �⇤, but do not deposit bias over regions near the TS.
The bias is applied as a function of some CVs s which can
distinguish between the deep minima of the two basins.
This is a much weaker requirement than on the order pa-
rameter �. As we show through our examples later, it
is easier to find such CVs rather than the corresponding
order parameter. The mean transition time ⌧M (t) for the
metadynamics run changes as the simulation progresses
and is given by

⌧M (t) =
1

!M

ZM (t)

Z⇤
M (t)

(2)

where M , ZM and Z⇤
M are analogues of , Z0 and Z⇤

0
in Eq. (1), but are sampled using the time-dependent
probability density of metadynamics [4].

If there is no bias deposited in the TS region around
� = �⇤, the dynamics of the system near it will be unaf-
fected, implying M ⇡  and Z⇤

M ⇡ Z⇤
0 . Thus generaliz-

ing to metadynamics the results of Ref. [8, 17] we write
the acceleration factor ↵ = ⌧

⌧M
as:

↵(t) ⇡ Z0

ZM
= he�(V (s(R),t))iM (3)

where the angular brackets denote an average over a
metadynamics run confined to �  �⇤, and V (s, t) is
the metadynamics time-dependent bias. In the above ar-
gument the crucial assumption is, that factoring out !
in Eqs. (1-2), only the denominators depend on the be-
havior in the TS region. Also, a precise knowledge of �⇤

is not necessary since the values of Z0 and ZM are dom-
inated by configurations deep inside the basin. Thus we
expect this approach to work even in cases where there
is an ensemble of transition states defined via committor
analysis [5]. Ultimately the validity of Eq. (3) stands on
the dynamics being Markovian in nature [16].

To make practical use of Eq. (3) and recover true time
from metadynamics, we need to avoid depositing bias in
the TS region and, in the lack of a precise knowledge
of this region, have a way of recognizing whether it has
been crossed. The first condition is simply met by in-
creasing the time lag between two successive Gaussian
depositions. Since in a rare event regime the time the
system takes to cross the TS region is rather short [5], it
is most unlikely that the crossing of the barrier and the
Gaussian deposition occur at the same time and we can
rule out this circumstance. Of course if we were to con-
tinue the run for a very long time, eventually we would
deposit Gaussians in the TS region and metadynamics
would reach its di↵usive converged limit in which the
FES is fully reconstructed. This is not our objective here
and we are able to obtain converged rates much before
this limit.
To complete the algorithm, we need to recognize when

the system has moved from one basin to another even
if we do not know the corresponding TS precisely. For
this we follow the evolution of the acceleration factor
↵(t) = 1

t

R t
0 dt0e�V (s,t0) estimated from the running tem-

poral average over the metadynamics time t. The tran-
sition from one basin to the other is encoded in the time
derivative of ↵(t):

d↵

dt
=

1

t


e�V (s,t) � 1

t

Z t

0
dt0e�V (s,t0)

�
(4)

which exhibits a clear kink whenever the system crosses a
barrier and enters a new state, since the first term in the
bracket changes abruptly while the second one, which is a
running average, changes much more slowly. As we shall
illustrate below with our examples (see Fig. 2(c) and sup-
plemental information (SI)), this discontinuous change
is easy to identify and gives us a clear one-dimensional
marker for when the TS is crossed, irrespective of the
number of CVs used. Clearly we do not know precisely
when the system has crossed the watershed between the
two minima, but as discussed earlier, this induces only a
very small uncertainty since the time lag between depo-
sitions is a few picoseconds as compared to much longer
transition times. We can also monitor if bias has been
added to the TS region by overlaying the instants of bias
deposition on an acceleration versus metadynamics time
plot. One can then simply discard such a run. However
we have not yet encountered such a case.
We now proceed with a few illustrative applications

of our approach. The calculations have been performed
using standard simulation tools [19–22] and the compu-
tational details can be found in SI. In SI we also pro-
vide graphical evidence that, following our recipe of in-
frequent bias deposition, no bias was deposited in the
TS regions. The first example is a 2-dimensional po-
tential shown in Fig. 1(a). This potential has multiple
stable states connected through two pathways with dif-
ferent barriers and jump lengths. The long-time mean
squared displacement and thus the di↵usion constant de-
pend on accurately sampling both pathways. While it is

References:
Tiwary & Parrinello, PRL 2013     
Salvalaglio, Tiwary & Parrinello, JCTC 2014
Grubmueller, PRE 1995;  Voter, JCP 1997
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from the bound pose to the unbound state to build initial path CVs. A
preliminary rough metadynamics then was performed on these initial
path CVs, and 8 new frames were chosen from the resulting trajectory
to define a better path. Although the solvation state was not explicitly
introduced in this path, it turned out to play an important role in these
runs. We note that the use of path CVs allows one to visit states even
far from the initial path, thus ensuring the exploration of all of the
possible ligand unbinding pathways.
Notice that these two sets of CVs are significantly uncorrelated with

each other. The first set involves an explicit accounting of the solvation
state. The second set, the path CVs, has no explicit information about
solvation. Given that nontrivial and slow fluctuations in solvation have
been expected to be one of the molecular determinants of
unbinding,9,49 these two sets are thus qualitatively very different by
construction. Furthermore, in the path CV framework, the inclusion of
the z variable facilitates a thorough exploration of the configuration
space orthogonal to the initial chosen path, a feature missing in the
first set of CVs. Further information on these two sets of CVs can be
found in the Supporting Information.
Calculation of koff from Metadynamics. Taking cue from the

work of Grubmüller20 and Voter,21 Tiwary and Parrinello noticed that
metadynamics, that was originally meant only to calculate static
properties, could be used to calculate transition rates in a rare event
scenario.19 The crucial assumption for this scheme to work is that zero
bias is added in the transition state region, and that the biased CVs can
distinguish between all metastable states of relevance. In the work of
Tiwary and Parrinello, this goal was obtained by an infrequent
deposition of the Gaussians.19 It was then later shown that the
assumptions on which the method is based can be checked by working
a statistical analysis aimed at establishing if the distribution of escaping
times is Poissonian,17 a property that should be satisfied if the rare
event hypothesis holds.17

From a metadynamics run, one can relate the time measured in
metadynamics tMTD to the real t via the equation:

α=t tMTD (1)

where α is an acceleration factor that can be computed from the added
metadynamics bias V(s,tMTD):

α = ⟨ ⟩βe V s t
V

( , )MTD (2)

where β is the inverse of kbT, and s is the value of the CVs at the time
tMTD. In practice, the following equation can be used to calculate the
rescaled time t at any given point of the simulation. Hence, the
rescaled time t is calculated by summing the time steps taken so far
rescaled at each step:40

∑= βt td e
i

n
V s t t

MTD
( ( ), )i iMTD MTD

(3)

where nMTD is the total number of steps in the metadynamics
simulation and tiMTD = i dt is the metadynamics time at the ith step.40

A statistical analysis based on the two-sample Kolmogorov−
Smirnov (KS) test can quantitatively assess how precisely the above
assumptions have been met. Thus, if significant bias got deposited in
the TS region even with infrequent biasing, or if there are hidden slow
motions at play that the biasing CV does not capture, it would lead to
failing the test for time-homogeneous Poisson behavior. This would
result in a low p-value on the KS test, where a value higher than 0.05 is
traditionally considered satisfactory for Poisson statistics.17

The problem of ligand unbinding is especially suited for this
approach. Indeed, numerous investigations over the years have
provided evidence in favor of an energy landscape with few high
and sharp barriers, resulting in an overall Arrhenius behavior of the
rates and relatively short travel times through the barriers.50−53 In
particular, the experimental koff values for ligand I, BIRB-796, and all of
the other derivatives were derived by considering a simple competition
mechanism, which inherently assumes single exponential kinetics, to fit
the experimental data.4,25,54

In practice, given a set of CVs, N independent metadynamics
simulations with infrequent bias deposition were started from the

ligand in the bound pose and stopped when the ligand reached the
unbound state. For each of these metadynamics simulations, the
rescaled unbinding time is calculated via eq 3. Next, the characteristic
unbinding time τ is calculated as the average of the various unbinding
time observations, and the unbinding rate koff as its reciprocal. An
empirical cumulative distribution function (ECDF) is built with the N
unbinding times calculated from the simulations, and a theoretical
cumulative distribution function (TCDF) is built from a large number
of times randomly generated according to a cumulative distribution
function of a homogeneous Poisson process with characteristic time
τ:17

τ= − −⎜ ⎟⎛
⎝

⎞
⎠

tTCDF 1 exp
(4)

Finally, a two-sample KS test is performed to test the null
hypothesis that the ECDF and the TCDF show no significant
differences and correspond to the same underlying distribution. The
null hypothesis is rejected if the p-value resulting from the KS test is
lower than the significance level α, which is usually taken as 0.05. In
the present case, N = 17 when we used CV1 plus CV2, N = 10 when
we used the path CVs, and N = 10 when we used only CV1.

Another important parameter that influences the quality of the
reconstructed dynamics is the frequency of bias deposition in the
metadynamics simulation. We are not aware of an a priori procedure
to know how infrequently the bias should be deposited. Instead, we
make use of the KS test to a posteriori assess if the frequency of bias
deposition was appropriate. In practice, we performed several tests
starting with bias deposition of 1 ps−1 and reducing down to 0.1 ps−1,
from which we obtained the results reported in this Article.

Note that in this work, metadynamics with frequent biasing in the
conventional sense is not used to obtain the free energy profile and the
corresponding thermodynamics of binding. Here instead, metady-
namics is used to enhance the fluctuations of the bound ligand and
promote its unbinding. Also note that, according to the Tiwary and
Parrinello formulation,19 the transition state regions should not be
modified with the metadynamics bias to allow a correct calculation of
the rates. Hence, the infrequent bias deposition is used during our runs
to avoid that the transition state regions are corrupted by such bias
during the transition between stable states. In addition, we stop the
simulations once the ligand reaches the unbound state for the first time
to avoid that further recrossings to the bound state corrupt the
transition state region. This scheme implies that neither the transition
state nor the unbound state regions of the free energy surface are
thoroughly sampled and converged. Therefore, this protocol does not
provide converged free energies for the calculation of binding
thermodynamics.

Unbinding Mechanism through Construction of a Markov
Model. We have built a kinetic model for the state-to-state transitions
to understand in detail the unbinding mechanism. The states of the
model were identified using CV1 and CV2 as coordinates from the full
unbinding metadynamics calculations. These provide information on
where the system spends most of the time.18,19 Following ref 18, we
considered only those states in which the system spends much longer
times than successive bias deposition during the metadynamics run. In
the present case, the bias deposition period was 10 ps, so only
configurations where the system spends a minimum of MD simulation
time of 1 ns or more were considered. Comparable nanosecond lag
times have been also used in Markov model studies of protein−ligand
association and protein folding.12,13,55 Apart from the unbound state
(US), three such configurations were found, labeled as BS (bound
state) and intermediates S2, S3.

To identify any kinetically relevant states that the previous simple
classification might have missed due to an imperfect choice of CV, we
performed RMSD clustering on the three states identified that the
system visits before the unbinding. For this purpose, we aligned the
trajectories by using the protein heavy atoms as a reference. Then, we
performed a RMSD-based cluster analysis56 with a cutoff of 2 Å on the
ligand heavy atoms. Finally, the states were drawn from the most
populated clusters where again the system spends a minimum time of
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from the bound pose to the unbound state to build initial path CVs. A
preliminary rough metadynamics then was performed on these initial
path CVs, and 8 new frames were chosen from the resulting trajectory
to define a better path. Although the solvation state was not explicitly
introduced in this path, it turned out to play an important role in these
runs. We note that the use of path CVs allows one to visit states even
far from the initial path, thus ensuring the exploration of all of the
possible ligand unbinding pathways.
Notice that these two sets of CVs are significantly uncorrelated with

each other. The first set involves an explicit accounting of the solvation
state. The second set, the path CVs, has no explicit information about
solvation. Given that nontrivial and slow fluctuations in solvation have
been expected to be one of the molecular determinants of
unbinding,9,49 these two sets are thus qualitatively very different by
construction. Furthermore, in the path CV framework, the inclusion of
the z variable facilitates a thorough exploration of the configuration
space orthogonal to the initial chosen path, a feature missing in the
first set of CVs. Further information on these two sets of CVs can be
found in the Supporting Information.
Calculation of koff from Metadynamics. Taking cue from the

work of Grubmüller20 and Voter,21 Tiwary and Parrinello noticed that
metadynamics, that was originally meant only to calculate static
properties, could be used to calculate transition rates in a rare event
scenario.19 The crucial assumption for this scheme to work is that zero
bias is added in the transition state region, and that the biased CVs can
distinguish between all metastable states of relevance. In the work of
Tiwary and Parrinello, this goal was obtained by an infrequent
deposition of the Gaussians.19 It was then later shown that the
assumptions on which the method is based can be checked by working
a statistical analysis aimed at establishing if the distribution of escaping
times is Poissonian,17 a property that should be satisfied if the rare
event hypothesis holds.17

From a metadynamics run, one can relate the time measured in
metadynamics tMTD to the real t via the equation:

α=t tMTD (1)

where α is an acceleration factor that can be computed from the added
metadynamics bias V(s,tMTD):

α = ⟨ ⟩βe V s t
V

( , )MTD (2)

where β is the inverse of kbT, and s is the value of the CVs at the time
tMTD. In practice, the following equation can be used to calculate the
rescaled time t at any given point of the simulation. Hence, the
rescaled time t is calculated by summing the time steps taken so far
rescaled at each step:40

∑= βt td e
i

n
V s t t

MTD
( ( ), )i iMTD MTD

(3)

where nMTD is the total number of steps in the metadynamics
simulation and tiMTD = i dt is the metadynamics time at the ith step.40

A statistical analysis based on the two-sample Kolmogorov−
Smirnov (KS) test can quantitatively assess how precisely the above
assumptions have been met. Thus, if significant bias got deposited in
the TS region even with infrequent biasing, or if there are hidden slow
motions at play that the biasing CV does not capture, it would lead to
failing the test for time-homogeneous Poisson behavior. This would
result in a low p-value on the KS test, where a value higher than 0.05 is
traditionally considered satisfactory for Poisson statistics.17

The problem of ligand unbinding is especially suited for this
approach. Indeed, numerous investigations over the years have
provided evidence in favor of an energy landscape with few high
and sharp barriers, resulting in an overall Arrhenius behavior of the
rates and relatively short travel times through the barriers.50−53 In
particular, the experimental koff values for ligand I, BIRB-796, and all of
the other derivatives were derived by considering a simple competition
mechanism, which inherently assumes single exponential kinetics, to fit
the experimental data.4,25,54

In practice, given a set of CVs, N independent metadynamics
simulations with infrequent bias deposition were started from the

ligand in the bound pose and stopped when the ligand reached the
unbound state. For each of these metadynamics simulations, the
rescaled unbinding time is calculated via eq 3. Next, the characteristic
unbinding time τ is calculated as the average of the various unbinding
time observations, and the unbinding rate koff as its reciprocal. An
empirical cumulative distribution function (ECDF) is built with the N
unbinding times calculated from the simulations, and a theoretical
cumulative distribution function (TCDF) is built from a large number
of times randomly generated according to a cumulative distribution
function of a homogeneous Poisson process with characteristic time
τ:17

τ= − −⎜ ⎟⎛
⎝

⎞
⎠

tTCDF 1 exp
(4)

Finally, a two-sample KS test is performed to test the null
hypothesis that the ECDF and the TCDF show no significant
differences and correspond to the same underlying distribution. The
null hypothesis is rejected if the p-value resulting from the KS test is
lower than the significance level α, which is usually taken as 0.05. In
the present case, N = 17 when we used CV1 plus CV2, N = 10 when
we used the path CVs, and N = 10 when we used only CV1.

Another important parameter that influences the quality of the
reconstructed dynamics is the frequency of bias deposition in the
metadynamics simulation. We are not aware of an a priori procedure
to know how infrequently the bias should be deposited. Instead, we
make use of the KS test to a posteriori assess if the frequency of bias
deposition was appropriate. In practice, we performed several tests
starting with bias deposition of 1 ps−1 and reducing down to 0.1 ps−1,
from which we obtained the results reported in this Article.

Note that in this work, metadynamics with frequent biasing in the
conventional sense is not used to obtain the free energy profile and the
corresponding thermodynamics of binding. Here instead, metady-
namics is used to enhance the fluctuations of the bound ligand and
promote its unbinding. Also note that, according to the Tiwary and
Parrinello formulation,19 the transition state regions should not be
modified with the metadynamics bias to allow a correct calculation of
the rates. Hence, the infrequent bias deposition is used during our runs
to avoid that the transition state regions are corrupted by such bias
during the transition between stable states. In addition, we stop the
simulations once the ligand reaches the unbound state for the first time
to avoid that further recrossings to the bound state corrupt the
transition state region. This scheme implies that neither the transition
state nor the unbound state regions of the free energy surface are
thoroughly sampled and converged. Therefore, this protocol does not
provide converged free energies for the calculation of binding
thermodynamics.

Unbinding Mechanism through Construction of a Markov
Model. We have built a kinetic model for the state-to-state transitions
to understand in detail the unbinding mechanism. The states of the
model were identified using CV1 and CV2 as coordinates from the full
unbinding metadynamics calculations. These provide information on
where the system spends most of the time.18,19 Following ref 18, we
considered only those states in which the system spends much longer
times than successive bias deposition during the metadynamics run. In
the present case, the bias deposition period was 10 ps, so only
configurations where the system spends a minimum of MD simulation
time of 1 ns or more were considered. Comparable nanosecond lag
times have been also used in Markov model studies of protein−ligand
association and protein folding.12,13,55 Apart from the unbound state
(US), three such configurations were found, labeled as BS (bound
state) and intermediates S2, S3.

To identify any kinetically relevant states that the previous simple
classification might have missed due to an imperfect choice of CV, we
performed RMSD clustering on the three states identified that the
system visits before the unbinding. For this purpose, we aligned the
trajectories by using the protein heavy atoms as a reference. Then, we
performed a RMSD-based cluster analysis56 with a cutoff of 2 Å on the
ligand heavy atoms. Finally, the states were drawn from the most
populated clusters where again the system spends a minimum time of
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group of the ligand follows this second water rotating its position
in the binding pocket away from the triad and leading to the final
B pose. In this state, the ligand still forms hydrogen bonds with
Asp189 via a direct or water-mediated interaction and with resi-
dues including Val223 and Tyr224 through the second water
molecule. The presence of water molecules at similar position in
different X-ray structures of trypsin (PDB ID codes 1s0q and
3atl) had previously suggested a functional role of these waters
that we are now able to explain.
Irrespective of how the state P is reached, the final unbinding

involves breaking of the hydrogen bond between the ligand’s tail
and the triad (Figs. 1 and 4).

TSEs for Rate-Limiting Steps. To investigate further the nature of
transition for the two rate-limiting steps, we analyzed the reactive
trajectories from metadynamics corresponding to these steps (SI
Appendix). We performed multiple short unbiased MD runs from
different points along these trajectories, and through these we
identified configurations which have a nearly 1/2 probability of
going back into either A and P, or A and B, depending on the
respective step being investigated. These configurations represent
the true dynamical bottlenecks for the unbinding. Further details
of these unbiased runs can be found in SI Appendix. We now
describe the ligand and protein interactions formed in these
transition states (Fig. 4).
The crucial and common feature is a partial solvation of the

ligand’s tail or of specific residues in the protein, and partial
breakage of shielded hydrogen bonds through water molecules
coming from the bulk. For the A to P event, the typical TSE
member as shown in Fig. 4 involves a water bridge formed be-
tween one of the nitrogen atoms of the benzamidine diamino
group and oxygen atoms in Asp189. The same nitrogen atom is also
interacting with one of triad 212–214 members. The other nitrogen
atom of the diamino group is now partially solvent exposed, and the
ligand is almost rotated outward of the binding pocket, but not yet
fully. For the A to B event, the typical TSEmember as shown in Fig.
4 involves a role played by two water molecules that previously were
in the bulk solvent. Similar to the TSE for A to P, a water bridge

is formed between one of the nitrogen atoms of the benzamidine
diamino group and an oxygen atom in Asp189. However, the sec-
ond nitrogen atom of the diamino group is now rotated inward and
has started to engage in water bridge interaction with residues such
as Val223 and Tyr224. In the TSE, the orientation of the ligand is
closer to state B than to the docked pose (SI Appendix).

Discussion
In this work we have demonstrated the possibility of studying
detailed unbinding kinetics of protein–ligand systems with all-
atom molecular dynamics using a metadynamics-based strategy.
We obtained multiple full unbinding trajectories for the trypsin–
benzamidine complex starting in the X-ray pose and directly com-
puted the unbinding rate koff . Our total simulated metadynamics
time of 5μs, after taking into account the scaling factor of Eq. 1,
corresponds to nearly 3 s of real-time evolution. We then enu-
merated the stable states found in the metadynamics runs and built
a Markov model for transitions between these states. Through these
we could describe the ensemble of unbinding pathways through
the multiple intermediates and identify the rate-limiting steps. In
combination with our previous work on funnel metadynamics that
gave us accurate binding affinity (27), we could also calculate the
binding rate kon. The validity of the rates at every step of the cal-
culation was demonstrated using rigorous statistical analyses.
The calculated koff in this work is slower than the experi-

mental measurement. This deviation is well within the error
expected from the accuracy of current force fields. For in-
stance, one reason for the koff being slower could be the lack of
polarization in the force field (42). It is clear from our simu-
lation that the rate-limiting step involves solvation of the ligand
by external water molecules. Previous studies using polarizable
force fields have suggested that polarization enhances the sol-
vation of benzamidine in water and at the same time weakens
the attraction between benzamidine and trypsin (42). Thus, our
nonpolarizable force field (39, 40) which does not include these
effects leads to a slower dissociation. Another shortcoming of
the force field, which however could act in the direction of
faster dissociation, is the diffusivity of three-site transferrable

Fig. 4. Typical mechanism of going from state A to P (Top) and A to B (Bottom). For each, typical TSE members as determined by committor analysis are also shown.
Relevant residues and water molecules are also indicated. Note that the biological water in state A is removed in the pre-TS state for path 1 (Top) to highlight the
role of water molecule coming from solvent. See main text for summary of key interactions, and SI Appendix for more details of the TSE and committor analysis.
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section, States S1 and S2, this triad plays an important role in
deciding which unbinding pathway is adopted. In state P, the li-
gand engages in hydrogen bonds, water bridges, or both, with one
or more of the residues from this triad. At variance with the poses
A and B, here the ligand can rotate, changing the interacting
partners within the triad residues. We have also calculated the
mean lifetime of pose P with 25 independent unbiased MD runs
starting in P, which gave an average lifetime of 29 ns, in excellent
agreement with the metadynamics value.

States S1 and S2. When the ligand is in the unbound and fully
solvated state, the protein is found in two substates, which we call
S1 and S2 (Figs. 2 and 3). In the first, the loop L is similar to its
X-ray structure, whereas in the other it is conformationally dis-
torted. The motion from S1 to S2 renders the protein temporarily
inactive. To the best of our knowledge the distorted pose S2 has
not been previously reported. It has a lifetime of around 0.7 ms.
We checked that this state is not an artifact of the choice of CVs
by doing metadynamics using different CVs, as well as two long
unbiased MD runs (SI Appendix). Specifically, in each of these
MD simulations the distorted pose lasted for at least 1.5 μs while
still not showing any sign of recovery to the X-ray pose. Ana-
lyzing the protein motion, we note that S2 can form because in
the presolvated state P, the triad 214–216 can undergo fast
fluctuations involving switching of stabilizing hydrogen bond
interactions. Often these interactions are temporarily stabilized
by the formation of a small alpha loop (Fig. 2). This results in a
partial collapse of the binding pocket that makes ligand reentry
difficult, as we have explicitly observed in some funnel metady-
namics runs where the system reached state S2 (SI Appendix).
This happens because in the S2 state the ligand cannot form
interactions with the triad 214–216. Interestingly, previous free-
binding simulations with distributed computing resources have
also found that during binding the system always goes through
a state involving interaction with residues of this triad (38). Note
that not taking this distortion into account has a very small effect
on koff and kon given the small lifetime of S2.

Dominant Unbinding Pathways and Rate-Limiting Steps. To identify
the dominant pathways during unbinding, we performed a flux
analysis (56, 57) on the state-to-state transition matrix built from
metadynamics simulations on the various stable states (Fig. 3).
Solving for the dominant eigenvalue of this matrix gives a koff
of 7.3 s−1, in excellent agreement with the full unbinding metady-

namics simulations. Looking at Fig. 3 one can note that the state P
is a mandatory stage during all of the unbinding pathways. As can
be seen from the calculated flux (SI Appendix) (56, 57), we find that
around 84% of the time the system prefers to unbind by going di-
rectly from A to B before going to P, whereas around 16% of the
time it goes straight from A to P. Our matrix also shows that the two
elementary steps, A to P and A to B, are the slowest steps in the
whole unbinding process. We now describe the atomistic details
of these rate-limiting steps along with the typical transition state
structures (Fig. 4).

A to P. The exit from A to the presolvated pose P has a highly
concerted and atomistically well-defined nature, assisted by sol-
vent water molecules (Fig. 4). Specifically, one water molecule
comes into the binding site from the outside, first breaking the
direct hydrogen bonds between the carboxyl group of Asp189
and the benzamidine tail, and then screening the interaction
between these two groups. This water bridge detaches the ligand
from Asp189, allowing a higher number of contacts of the dia-
mino group with the surrounding water molecules. Note how in
the first intermediate subsequent to state A (Fig. 4), at the time
of entry of the first water, the benzamidine tail can still engage in
direct interaction with the triad 212–214. The ligand then rotates
in the binding site in the direction of the triad, thus exposing its
charged tail toward the solvent. Whereas Asp189 still forms
hydrogen bonds with the water molecule, the ligand now forms a
hydrogen bond or water-mediated interactions with one or more
of the residues in the triad 212–214.

A to B. This transition also involves a rotation of the ligand but is
less pronounced and is in a direction opposite to that needed to
go from A to P. A key role is played by not one but two water
molecules entering from the solvent and by the orientation of
the triad 212–214 (Fig. 4). Specifically, one water approaches the
ligand in close proximity of Asp189 again mediating the in-
teraction between the nitrogen atoms of the benzamidine dia-
mino group and the carboxyl group of Asp189. In contrast with
the A to P transition, here after the first water enters the binding
pocket, the triad 212–214 is oriented such that it cannot engage
in direct interaction with the benzamidine tail. This is the first
intermediate subsequent to state A (Fig. 4). An additional water
molecule now moves toward an inner position in the binding site
where it can engage hydrogen bond interactions with the car-
bonyls of residues such as Val223 and Tyr224. The diamino

Fig. 3. State-to-state transition rates for trypsin–benzamidine unbinding. All rates are in s−1. The respective mean lifetimes for ligand binding states are also shown.
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Markov state model Koff = 7.3 /sec
Estimate from full unbinding runs = 9.1 ± 2.5 /sec
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koff and Rate-Determining Step
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and the hypersurface �(R) = �⇤ defines the dividing sur-
face which also contains the transition state (TS) [5, 16].
Under commonly made assumptions [8] we can write the
mean transition time ⌧ over the barrier into the other
state as:

⌧ =
1

!

Z0

Z⇤
0

=
1

!

R
��⇤ dRe��U(R)

R
�=�⇤ dRe��U(R)

(1)

where ! is a characteristic molecular frequency of the sys-
tem and  is a transmission coe�cient accounting for TS
recrossing events [5, 8, 16]. Z0, Z⇤

0 are partition functions
for the system confined to the first basin and to the hy-
persurface � = �⇤ respectively with averages performed
over the Boltzmann ensemble, U(R) is the interaction
potential, and � = 1

kBT is the inverse of temperature
multiplied by the Boltzmann constant kB . For  = 1,
Eq. (1) is equivalent to the result of transition state the-
ory [16]. But no such assumption is needed here.

Let us now assume that we can perform a metadynam-
ics run in which by accumulating bias against visited
states we gradually enhance the probability of visiting
� = �⇤, but do not deposit bias over regions near the TS.
The bias is applied as a function of some CVs s which can
distinguish between the deep minima of the two basins.
This is a much weaker requirement than on the order pa-
rameter �. As we show through our examples later, it
is easier to find such CVs rather than the corresponding
order parameter. The mean transition time ⌧M (t) for the
metadynamics run changes as the simulation progresses
and is given by

⌧M (t) =
1

!M

ZM (t)

Z⇤
M (t)

(2)

where M , ZM and Z⇤
M are analogues of , Z0 and Z⇤

0
in Eq. (1), but are sampled using the time-dependent
probability density of metadynamics [4].

If there is no bias deposited in the TS region around
� = �⇤, the dynamics of the system near it will be unaf-
fected, implying M ⇡  and Z⇤

M ⇡ Z⇤
0 . Thus generaliz-

ing to metadynamics the results of Ref. [8, 17] we write
the acceleration factor ↵ = ⌧

⌧M
as:

↵(t) ⇡ Z0

ZM
= he�(V (s(R),t))iM (3)

where the angular brackets denote an average over a
metadynamics run confined to �  �⇤, and V (s, t) is
the metadynamics time-dependent bias. In the above ar-
gument the crucial assumption is, that factoring out !
in Eqs. (1-2), only the denominators depend on the be-
havior in the TS region. Also, a precise knowledge of �⇤

is not necessary since the values of Z0 and ZM are dom-
inated by configurations deep inside the basin. Thus we
expect this approach to work even in cases where there
is an ensemble of transition states defined via committor
analysis [5]. Ultimately the validity of Eq. (3) stands on
the dynamics being Markovian in nature [16].

To make practical use of Eq. (3) and recover true time
from metadynamics, we need to avoid depositing bias in
the TS region and, in the lack of a precise knowledge
of this region, have a way of recognizing whether it has
been crossed. The first condition is simply met by in-
creasing the time lag between two successive Gaussian
depositions. Since in a rare event regime the time the
system takes to cross the TS region is rather short [5], it
is most unlikely that the crossing of the barrier and the
Gaussian deposition occur at the same time and we can
rule out this circumstance. Of course if we were to con-
tinue the run for a very long time, eventually we would
deposit Gaussians in the TS region and metadynamics
would reach its di↵usive converged limit in which the
FES is fully reconstructed. This is not our objective here
and we are able to obtain converged rates much before
this limit.
To complete the algorithm, we need to recognize when

the system has moved from one basin to another even
if we do not know the corresponding TS precisely. For
this we follow the evolution of the acceleration factor
↵(t) = 1

t

R t
0 dt0e�V (s,t0) estimated from the running tem-

poral average over the metadynamics time t. The tran-
sition from one basin to the other is encoded in the time
derivative of ↵(t):

d↵

dt
=

1

t


e�V (s,t) � 1

t

Z t

0
dt0e�V (s,t0)

�
(4)

which exhibits a clear kink whenever the system crosses a
barrier and enters a new state, since the first term in the
bracket changes abruptly while the second one, which is a
running average, changes much more slowly. As we shall
illustrate below with our examples (see Fig. 2(c) and sup-
plemental information (SI)), this discontinuous change
is easy to identify and gives us a clear one-dimensional
marker for when the TS is crossed, irrespective of the
number of CVs used. Clearly we do not know precisely
when the system has crossed the watershed between the
two minima, but as discussed earlier, this induces only a
very small uncertainty since the time lag between depo-
sitions is a few picoseconds as compared to much longer
transition times. We can also monitor if bias has been
added to the TS region by overlaying the instants of bias
deposition on an acceleration versus metadynamics time
plot. One can then simply discard such a run. However
we have not yet encountered such a case.
We now proceed with a few illustrative applications

of our approach. The calculations have been performed
using standard simulation tools [19–22] and the compu-
tational details can be found in SI. In SI we also pro-
vide graphical evidence that, following our recipe of in-
frequent bias deposition, no bias was deposited in the
TS regions. The first example is a 2-dimensional po-
tential shown in Fig. 1(a). This potential has multiple
stable states connected through two pathways with dif-
ferent barriers and jump lengths. The long-time mean
squared displacement and thus the di↵usion constant de-
pend on accurately sampling both pathways. While it is
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ABSTRACT: Understanding the structural and energetic requi-
sites of ligand binding toward its molecular target is of paramount
relevance in drug design. In recent years, atomistic free energy
calculations have proven to be a valid tool to complement
experiments in characterizing the thermodynamic and kinetic
properties of protein/ligand interaction. Here, we investigate,
through a recently developed metadynamics-based protocol, the
unbinding mechanism of an inhibitor of the pharmacologically
relevant target p38 MAP kinase. We provide a thorough
description of the ligand unbinding pathway identifying the most
stable binding mode and other thermodynamically relevant poses.
From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s− 1. This is in good agreement with the
experimental value (koff = 0.14 s− 1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of
the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial
roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38
inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in
designing new drugs with engineered binding/unbinding kinetics.

■ INTRODUCTION

Modern drug design strategies attempt at identifying ligands
not only with large affinity for their protein targets (measured
by the thermodynamic equilibrium binding constant Kb), but
also with controlled residence times.1,2 In particular, drug
selectivity in vivo may be greatly improved if the residence time
for the drug target is large and, more specifically, when it is
larger than those of unwanted protein targets.3 In this way,
drugs may unbind from undesired proteins for which they have
significant affinity and remain on their desired target for some
time after they are administered.3

However, while highly desirable, manipulating drugs’
chemical structure to tune unbinding kinetics has proven to
be very difficult.4,5 While binding rate constants (kon) can be
approximated to some extent via a variety of methods, the
statistically accurate prediction of the pharmaceutically relevant
koff along with a structural characterization of the transition
state is extremely challenging. These methods include
Brownian Dynamics (BD) simulations,6,7 Molecular Dynamics

(MD) simulations running on optimized hardware,8,9 and MD
simulations via Markov State Models.10,11

A possible path to the calculation of unbinding rate koff
through computer simulation is to first estimate the binding
rate kon and then relate it to koff using the relation kon/koff = Kb,
where Kb is the binding constant. This requires simulating a
very large number of binding events to obtain a reliable
statistics. Despite valiant efforts,8,9,12 this has proven challeng-
ing. In addition, the error in kon adds to the error in Kb, leading
to even larger uncertainties.
A direct calculation of koff would appear to be a more natural

route. Unfortunately, the presence of large free energy barriers
leads to very large unbinding times and frustrates any direct
calculation of koff. Several methods have been suggested to solve
this problem.13− 19 For example, Markov State Models are used
to extrapolate the long time behavior of the system from a large
number of relatively short MD simulations. Using this
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koff
 
(exp) = 0.14 /sec*

*Regan	et	al.	BMCL	(2003)
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Furthermore, using eq 1 and considering that Kb is the inverse
of KD, we could estimate KD for catechol and 4-methylcatechol,
which is 6.9 ± 2.1 × 10−3 and 0.9 ± 0.4 × 10−3, respectively.

High-Precision Dissociation Constant Determination
Using Solution NMR. NMR is ideally suited for the analysis
of protein interactions with dissociation constants in the μM

Figure 3. PMF and FES represented as a function of the different collective variables used in FM calculations and evolution of the absolute binding
free energy (lower-left panel). Upper-left: compared PMF W(z) of catechol (blue trace) and 4-methylcatechol (red trace) as a function of the Z-axis
projection distance between Cys47 SG and the center of mass of the ligand heavy atoms. Upper/lower-right: FESs of the PRX5-ligand system for
catechol (upper) and 4-methylcatechol (lower) as a function of the protein−ligand distance projection on Z axis and the protein−ligand distance
from Z axis. The FESs show the lowest energy basins found by the FM calculations. Lower-left panel: evolution of absolute binding free energy
during 500 ns of FM simulation for catechol (blue trace) and 4-methylcatechol (red trace). Using PMF W(z) and Rcyl = 1 Å in eqs 1 and 2, the
estimate of ΔGb

0 for catechol and 4-methylcatechol converges to −3.0 ± 0.2 and −4.2 ± 0.3 kcal/mol, respectively. The uncertainty is calculated as
the SD from the asymptotic value of the absolute protein−ligand binding free energy obtained in the last part of the simulation.

Figure 4. High-precision determination of dissociation constants KD of human PRX5 bound to catechol and 4-methylcatechol using solution NMR.
Upper-pannels: parts of the overlaid 1H−15N HSQC spectra of PRX5 at various concentrations of catechol in aqueous solution, 28 °C and pH 7.4.
Chemical shift indicated with boxed crosses are the initial NMR chemical shift with no ligand. Lower two panels: plots of the NMR chemical shift
perturbation (Δδ) as a function of ligand-to-protein concentration ratio ([L]/[P]) for the amino acids sequence position indicated on the graphs.
Data were nonlinearly fitted to the 1:1 protein−ligand model P + L ⇄ PL with a single dissociation KD.
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significant CSPs (Leu116, Ser118, Ile119, Gly121, and Thr147
for catechol and Ile119, Gly121 for 4-methylcatechol). Observed
significant CSPs suggest that interaction of PRX5 with catechol
and 4-methylcatechol is indeed specific despite their low-affinity.
When the most significant CSPs are plotted against the ratio

ligand-to-protein concentrations [L]/[P], hyperbolic isotherms
are obtained as shown in Figure 4. The data can be best fitted
using a nonlinear fitting protocols corresponding to a 1:1
protein−ligand binding model with a single KD. Overall
catechol induced more CSPs than 4-methylcatechol. Catechol
induced to the most (Ala42 and Thr44) 0.2 ppm of CSPs,
while 4-methylcatechol induced to the most CSPs between
0.1−0.15 ppm. However, the averages of the data (each titra-
tion was duplicated) shown in Figure 4 lead to KD’s of 4.5 ± 0.6
and 1.0 ± 0.2 kcal/mol at 301 K in phosphate buffer saline
(PBS) solution pH 7.4 (NaPi 10 mM, NaCl 137 mM, KCl
3.3 mM) TCEP 2 mM, for catechol and 4-methylcatechol,
respectively.

■ DISCUSSION
Details of the Ligand−Protein Interaction. When the

ligand occupies the protein active site, the two binding modes
(protein−ligand S−O−O angles 60° and 180°, and protein−
ligand SG−O1−C1−C2 torsion 0° and 180°, respectively) ex-
change regularly, and the ligand samples the whole conforma-
tional space dynamically. For catechol, which owns a C2v
symmetry, the two SG−O1−C1−C2 torsion values correspond
to two different binding conformations, as shown in Figure 5.
For 4-methylcatechol with a Ch symmetry the two SG−O1−
C1−C2 torsion values correspond to more possible con-
formations in which the methyl group could interact differently
within the PRX5 active site. In the crystal state, the methyl
group is oriented in the active site interacting with neighboring
hydrophobic side chains such as Leu116, Ile119, Phe120, and
Phe80 (Figure 6A). Due to the protein dynamics, the active site
changes its shape during the ligand binding and unbinding
events. This is clearly shown in Figure 6 where the distances
between Cys47 SG atom, and the side chains of Leu116 and
Ile119 are plotted during a standard MD calculation. In parti-
cular, one can observe that, on average, these distances elongate
during the unbinding events and shorten in the binding by
about 2 Å.
The different ligand binding conformations could not be

discriminated just by observing the FES associated with the two
protein−ligand distance CVs given in Figure 3 (right panels).
Catechol. The different ligand binding modes can be

identified reconstructing the FES as a function of the distance
CV on Z axis and the protein−ligand SG−O1−C1−C2 torsion
(Figure 5). This operation is possible using the reweighting
algorithm of Bonomi et al.28 Looking at the FES shown in
Figure 5 two free-energy minima can be found. The first, basin A,
corresponds to the ligand binding mode with a single
protein−ligand H-bond, including the conformations found
by X-ray.20,21 The second basin, B, is energetically equivalent to
A and represents the binding mode with two protein−ligand
H-bonds.
4-Methylcatechol. As for catechol, all the bound

4-methylcatechol conformations fall in the free-energy basins
reported in Figure 6. Here, two most populated binding modes
are found: conformer A, which is similar to the crystal
conformation with a single H-bond, and conformer B, which
shows the chelate H-bond interaction. In this state, the methyl
group is orientated to the hydrophobic cavity formed by

residues such as Phe80 (chain B), Phe120, and Leu116. Two
less populated states are also present in both energy basins.
Conformer C is a minor state of basin A where the ligand is
slightly moved from A due to the steric hindrance of the ligand
methyl group. Conformer D is a minor state of basin B where
the methyl group points toward the solvent where it is not
possible to form favorable hydrophobic interactions. The
weaker ligand−protein interactions formed in C and D if com-
pared with A and B lead us to consider these poses the first
binding event of 4-methyl-cathecol in the active site before
reaching its final position. Alternatively, they can be considered
the first unbinding event of the ligand from the catalytic site of
the enzyme.

Calculated Absolute Binding Free Energies and
Experimental High-Precision Dissociation Constants
Determined by NMR. Table 1 summarizes the calculated

absolute binding free energies ΔGb
0 using FM protocol and the

dissociation constants KD determined using NMR. For each
ligand the experimental value matches very well the calculated
one.
Since both ligands are soluble in water, we checked that the

presence of 0−8% DMSO does not induce a significant
difference. DMSO alone causes some limited CSP of 1H−15N
other amino acids including Ser48 and Gly46 that were also
used for the KD determinations affecting marginally the deter-
mined dissociation constant values. Previously published data,
determined using NMR saturation transfer difference spectros-
copy, for the catechol-PRX5 system reported a KD of 3.3 ±
0.5 × 10−3 that is very close to our estimate.31 The use of DTT
instead of TCEP reducing agent does not affect significantly the
measured values. We just noticed that DTT caused a pro-
nounced long-term precipitation of the PRX, modifying the
PRX5 concentration. However, if the NMR titration is done
within a day or less, no significant differences of the data were
noticed.

Structural Source of the Difference in ΔGb
0 between

the Two Ligands of PRX5. Based on the analysis of the FESs,
the source of stabilizing interactions between the catechol
ligands and PRX5 is clearly the possibility to form specific
patterns of H-bonds between its two hydroxyl groups and the
thiolate of the catalytic Cys47.
Given the estimated pKa of catalytic PRX Cys ranging from

5 to 6, more than 90% of Cys47 is a thiolate in solution at pH 7
and the source of the reactivity of PRX’s toward their substrate
peroxides.20 The specific conformer’s geometry of the type A
in Figure 5 was proposed to be an analog of the transition
state20 and lead to a well-defined free-energy basin. This sort
of stabilizing interaction is reproduced with 4-methylcatechol

Table 1. Comparison of Calculated and Experimental
Dissociation Constants KD and Absolute Binding Free
Energy ΔGb

0 of Catechol and 4-Methylcatechol for Human
PRX5

catechol 4-methylcatechol

ΔGb
0a

FMb −3.0 ± 0.2 −4.2 ± 0.3
NMR −3.2 ± 0.1 −4.1 ± 0.1
KD (10−3)
FMb 6.9 ± 2.1 0.9 ± 0.4
NMR 4.5 ± 0.6 1.0 ± 0.2

akcal/mol. bMean value over the last 100 ns of 500 ns FM.
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to mM range in the fast exchange equilibrium on the NMR
time scale.29,30 1H−15N NMR data of PRX5 can be used to titrate
the reduced form PRX5 against catechol and 4-methylcatechol.31

Since the oxidized form dithiothreitol (DTT), a reagent com-
monly used to reduce disulfide bridges of proteins, was reported
as a ligand of PRX5,20 we preferred to use the unrelated reducing
agent tris(2-carboxyethyl)phosphine (TCEP) hydrochloride, as
not to interfere with the ligand binding. Figure 4 shows overlay
of 1H−15N HSQC spectra recorded after each increasing

concentrations of the ligands. Specific amino acids are affected
by the interaction and present significant chemical shift pertur-
bations (CSPs). The corresponding CSPs were then quantified
carefully. The most pronounced CSPs are the 1H−15N amide
group of amino acids in the active site, near the catalytic cysteine
(Cys47). Residues Ala42, Thr44, Gly46, and Cys47 for catechol
and Thr44, Ser48, and Thr50 for the methylated homologue are
mostly affected. Some amide groups of amino acids located in the
loop and the α-helix adjacent to the active site also present

Figure 5. FES of catechol interacting basins with PRX5 evaluated using FM. Free energies are represented using iso-energetic contours spaced by
1 kcal/mol from the minima at 0 and 5 kcal/mol and a color continuum from red (highest free energy) to blue (lowest free energy) as a function of
the positional projection of catechol center of mass along the Z axis defined according to the Material and Methods section, and the torsion defined
by the catalytic thiolate SG atom of PRX5 Cys27 residue and the O1, C1, and C2 atoms of catechol. Map minimum B represents the double
H-bonds binding mode, while energetic A basin represents the single aligned H-bond similar to the crystal ligand positions (see the text).

Figure 6. Binding FES of the human PRX5/4-methylcatechol complex obtained through FM (upper right), NVT unrestrained dynamics trajectories
(lower right), and representation of the lowest energy ligand binding modes (left). Snapshots represent the surface accessible to the solvent of the
PRX5 active site in gray and the SG atom of catalytic Cys47 in yellow. 4-methylcatechol is represented with sticks, and the surrounding amino acids
are indicated either from the chain A or B of the PRX5 homodimer. Right diagrams, top: FES representation as a function of two collective variables
used in funnel-metadynamics. Z-axis projection distance between Cys47 SG and the center of mass of the ligand heavy atoms and the protein−ligand
torsion angle defined by PRX5 Cys47 SG, 4-methylcatechol O1, C1, and C2 atoms. Lower-right diagram: interatomic distances as a function of
unrestrained NVT dynamics time steps during the first 200 ns of the 500 ns run. Protein(Cys47)-ligand distances measured for 4-methylcatechol
(4MC) and DTT are plotted in green (SG-O1), blue (SG-O2), and black (SG to the DTT oxygen H-bonded to Cys47 in the X-ray structure),
respectively, indicating the binding/unbinding events along the time steps (red arrows). Interatomic distances within the PRX5 active site including
Cys47 SG with Leu116 CG (brown), Ile119 CB (red) and Phe120 (light blue) are graphed.
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Funnel Restraining Potential 

Potential Details: 
¾  Cylinder Radius 1 Å; 
¾  Cone angle 0.45 rad;  

¾  Cone-cylinder Transition 27 Å; 
¾  Soft walls at -4 Å and 29 Å with  

 spring constant k 500 kcal/mol∙Å2 

 
 

System: 
¾  Homology Model GluCl2b; 

¾  Docking with GOLD;  
¾  Starting from the system  

 equilibrated with MD  
 and GABA docked. 

 

Wild type
ΔGb

0 = −9.3 ± 0.2 kcal/mol

E204A mutant
ΔGb

0 = −6.3 ± 0.1 kcal/mol

R111A mutant
ΔGb

0 = −3.4 ± 0.3 kcal/mol

R111A Mutation Results 

ΔGWT = -3.4 [+3.5] ± 0.3 kcal/mol 
 

E204A Mutation Results 

ΔGWT = -6.3 [+3.5] ± 0.1 kcal/mol 
 

Wild Type Results 

ΔGWT = -9.3 [+3.5] ± 0.2 kcal/mol 
 

Comitani, Limongelli, Molteni, JCTC (2016) 

Fruit Fly Resistance to Dieldrin PLGIC
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Ligand/Protein Binding

What if we have large protein 
conformational changes?
(configurational entropy)
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An exhaustive description of the molecular recognition mechanism
between a ligand and its biological target is of great value because
it provides the opportunity for an exogenous control of the related
process. Very often this aim can be pursued using high resolution
structures of the complex in combination with inexpensive compu-
tational protocols such as docking algorithms. Unfortunately, in
many other cases a number of factors, like protein flexibility or sol-
vent effects, increase the degree of complexity of ligand/protein
interaction and these standard techniques are no longer sufficient
to describe the binding event. We have experienced and tested
these limits in the present study in which we have developed and
revealed the mechanism of binding of a new series of potent inhi-
bitors of Adenosine Deaminase. We have first performed a large
number of docking calculations, which unfortunately failed to yield
reliable results due to the dynamical character of the enzyme and
the complex role of the solvent. Thus, we have stepped up the
computational strategy using a protocol based on metadynamics.
Our approach has allowed dealing with protein motion and solva-
tion during ligand binding and finally identifying the lowest en-
ergy binding modes of the most potent compound of the series,
4-decyl-pyrazolo[1,5-a]pyrimidin-7-one.

ADA ∣ well-tempered metadynamics ∣ ligand/protein docking ∣
path collective variables ∣ reweighting algorithm

Adenosine Deaminase (ADA) regulates the purine metabo-
lism by catalyzing the irreversible hydrolysis of adenosine

to inosine and 2′-deoxyadenosine to 2′-deoxyinosine. Thus, this
enzyme plays a crucial role in many pathologies such as inflam-
mation, some types of cancer, and others which are strictly
connected to the physiological level of these nucleosides (1–5).
Despite great efforts in developing ADA inhibitors, only Pentos-
tatin is currently in clinical use (I in Fig. S1) (3). However, recent
progress has been reported by Terasaka et al. and by some of us
who have developed a new generation of nonnucleoside ADA
inhibitors (II, III, and IV in Fig. S1) (6–11). Unfortunately, the
understanding at molecular level of the ligand/ADA interaction is
hampered by the pronounced ability of the active site to accom-
modate different inhibitors and by the crucial role played by
water molecules during ligand binding. A rational drug design is
further complicated by the fact that in response to different in-
hibitors, ADA can assume either an open or a closed conforma-
tion by changing the position of the H3 α-helix (Thr57-Ala73).
The open conformation corresponds to the apo-form (PDB ID
code 3iar) and is preferred when a nonnucleoside inhibitor is
bound (12, 13). In this case, the active site presents a hydrophilic
subsite S0 and three hydrophobic subsites F0, F1, and F2 (Fig. 1A)
(13). The S0 subsite is defined by the structural gate formed by a
β-strand (Leu182-Asp185) and two leucine side chains attached
to the H3 α-helix while the F0 site is formed by the hydrophobic
side chains of the H3 α-helix. In the open form the H3 α-helix
assumes a conformation that exposes two additional hydrophobic
subsites in the upper part the helix, namely F1 and F2 (13). The

binding of a ground-state inhibitor, like the hydroxylated form
of adenosine (HDPR) (V in Fig. S1) (14), induces a conforma-
tional change that leads to the closed form. In this case, the gate
is closed, the F1 and F2 sites are no longer accessible and the
active site is composed only by S0 and F0 (Fig. 1B).

While the structural difference between the two conformations
is believed to be the result of binding to different inhibitors, the
specific details of the enzyme conformational changes are still un-
clear. For instance, Kinoshita, et al. (15) have recently reported
that the ground-state inhibitor EHNA (VI in Fig. S1), expected to
bind the closed form, has been cocrystallized rather surprisingly
in the open one. In fact, experimental evidences suggest that the
n-hexyl group of EHNA interacts with the narrow hydrophobic
entrance of the ADA active site destabilizing the closed form.
Another example of the difficulty of predicting a ligand binding
model comes from the inhibitor FR221647, which has also been
found to bind to the open conformation in spite of having been
designed as a binder of the closed form (12).

In this confusing scenario, a practical approach is to find a
lead compound with whatever strategy works (high-throughput
screening, ligand-based design etc.), understand at molecular
level the lead/protein recognition mechanism and finally, if neces-
sary, try to rationally improve the lead.

Fig. 1. Representation of ADA in the open (A) and closed form (B).
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•s(R)* allows the system to go from 
state A (closed) to state B (open)**

* Branduardi et al. JCP (2007); Bonomi et al. JACS (2008); Ren et al. JCP (2005)
** Closed and open state defined by the available X-ray ADA structures

Path Collective Variables

•z(R)* allows exploring states 
far from the guess path
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A

B

Limongelli et al. PNAS (2010)

Path Collective Variables
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The ADA Movie

Limongelli et al. PNAS (2012)
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The ligand binds to ADA in the open conformation

- closed X-ray

- open X-ray
- open metadynamics

The Binding Mode

Limongelli et al. PNAS (2012)
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D19
The Boltzmann probability 

distribution for different CVs can be 
computed as:

Bonomi et al. JCC (2009)

UV absorption spectroscopic analyses. Stock solutions of 100.0 μM
ZnCl2, from Sigma-Aldrich, and of 50.00 μM 3b were prepared by
dissolving the required amount of substance in distilled water.
For 3b the solubility was facilitated by using DMSO. Metal co-
ordination experiments were carried out by adding from 0 to
2.0 mL of zinc(II) ion solution, in 0.5 mL increments, to
2.0 mL of 50.00 μM 3b and diluting to a total volume of 5.0 mL
with potassium phosphate pH ¼ 7.2. Titration was monitored by
UV-Vis spectroscopy measuring the absorbance of each solution,
at ranging from 190 to 260 nm and at T ¼ 20 °C, using a Perki-
nElmer Lambda 25 spectrophotometer.

Docking simulations.Molecular docking simulations of 3b, EHNA
and HDPR in the three-dimensional X-ray structures of ADA
were carried out using the AutoDock software package (version
4.0) (1, 2). The protein coordinates were taken from the HDPR/
ADA (PDB ID code 1krm) (3) and EHNA/ADA complex (PDB
ID code 2z7g) (4) for the closed and open form, respectively.

Ligands and protein setup. The charges on the ligand were com-
puted using the restrained electrostatic potential (RESP) fitting
procedure (5). First the ESP were calculated by means of the
Gaussian package (6) using a 6-31G* basis set at Hartree-Fock
level of theory and then the RESP charges were obtained by a
two-stages fitting procedure (7). The Gasteiger-Marsili partial
charges (8) were assigned to the protein atoms except for the zinc
ion and its coordinating residues (zinc subsite). These are repre-
sented by His12, His15, His211, Asp292 and a water molecule
when the ADA open form is considered and His12, His15,
His211, Asp292, and HDPR when the closed form is used. For
these atoms the RESP charges were obtained using the unrest-
ricted density functional UB3LYP. For the optimization and
the subsequent electrostatic potential (ESP) calculation, the fol-
lowing locally dense basis set was used: 6-31G* was assigned to
the Zn coordinating side chains, except those atoms directly in-
volved in the zinc coordination. In fact, to better describe charge
transfer phenomena, the basis set on these atoms was augmented
to 6–31+G*. Conversely, to limit the amount of computational
time, the other atoms of the coordinating residues, as well as the
acetyl (ACE) and N-methyl (NME) capping groups, were treated
with the smaller 3–21G* basis set. The Stuttgart-Dresden ECP
(SDD) was used for zinc ion.

The octahedral coordination geometry of the Zn ion for ab
initio calculations was obtained from crystallographic templates
(PDB ID code 2z7g and 1krm) and the zinc was considered in the
þ2 oxidation state with low spin state (S ¼ 0).

Hence, the system was geometrically optimized constraining
the backbone atoms, and using the previously reported locally
dense basis set. The model system was then optimized till reach-
ing the default Gaussian03 convergence criterion.

The RESP charges were then calculated on the geometrically
minimized Zn subsite. First the ESP were calculated again by
means of the Gaussian package (6) and then the RESP charges
were obtained by a two-stages fitting procedure (7), fitting first
the polar areas by using weak hyperbolic restraints (0.0005 a.u.),
and then fitting the remaining areas imposing equivalencies and by
using a stronger hyperbolic restraint (0.001 a.u.). In each step, the
charges of the standard residues ACE and NME were constrained
to their AMBER force field value (9). The electrostatic potential,
used as input by the program to compute the RESP charges, was
sampled according to the Merz-Singh-Kollman scheme (10, 11),
namely using 10 concentric layers at the default level of spacing,
a surface density of 6 points∕Å2, and adopting the covalent radius
of 0.88 Å for zinc as reported on the WebElements server (Winter
M.WebElements™ Periodic Table. United Kingdom: University of
Sheffield. http://www.webelements.com/). Hence, the computed
charges for ligands and Zn subsite were used for further computa-
tional calculations.

Docking setup. The docking area has been defined by a box, cen-
tered on the cartesian coordinates of the zinc ion. Grids points of
60 × 60 × 60 with 0.375 Å spacing were calculated around the
docking area for all the ligand atom types using AutoGrid4.
For each ligand, 100 separate docking calculations were per-
formed. Otherwise default docking parameters were applied.
The docking conformations were clustered on the basis of rmsd
(rmsd ¼ 1.5 Å) between the cartesian coordinates of the ligand
atoms and were ranked based on the AutoDock scoring function.

The interfacial water CV. In order to assess the contribution of the
water bridge interaction between compound 3b and Asp19 in the
binding process, we have reweighted (12) the free energy along
the distance and the interfacial water CV (14). This latter CV is
defined as:

sIntWat ¼
∑

n0

i

!
1 − ðjri−r1jr0

Þn

1 − ðjri−r1jr0
Þm

"!
1 − ðjri−r2 jr0

Þn

1 − ðjri−r2 jr0
Þm

"
;

where jri − r1j and jri − r2j are the distances between the n0
waters oxygens and the oxygen atom of the pyrazolo[1,5-a]pyri-
midin-7-one ring and one of the carboxylic oxygens of Asp19, re-
spectively, and r0 ¼ 4, n ¼ 6 and m ¼ 12 are the values used in
the switching function to simulate H-bond interaction.

The VMD program (15) was used for visualization and data
analysis while the figures were made using the PyMOL software
(16).
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Allostery in the P2Y1 GPCR

to accumulate drugs around the membrane-embedded
receptors, while a “reduction in dimensionality” effect presumes
that drugs move from 3D diffusion in the solvent to 2D
diffusion within the plane of the membrane so as to increase the
drug-receptor collision rate, and the rebinding effect may
increase the in vivo duration of the drug effect.11−14 In the
context of the microkinetic model, the concentration of
hydrophobic ligands in the lipid solvated layer may be driven
up due to their affinity to the membrane, with the increase of
ligand occupancy in the target compartment. In this way, the
experimentally measured affinity may be more potent than the
“actual” affinity to the receptor. This membrane accumulation
effect thus could muddy the structure-affinity relationship
(SAR) analysis in drug design.15 However, these theoretical
models are difficult to validate directly with general
experimental methods. Although the membrane association
effect may be mimicked by use of the immobilized artificial
membrane (IAM) method,16 the experiment was conducted
without receptors, and the direct connection between the
membrane effect and the receptor could not be established.
Apart from the accumulation effect of the membrane, attention
should also be paid on more advanced questions as to how the
membrane could affect drug’s diffusion and what kind of
pathway the drug utilizes to associate with its pocket on the
receptor.
Due to the difficulty in measuring ligand binding interactions

with membrane proteins by use of experimental methods,
molecular dynamics (MD) simulations serve as an alternative
approach. Previously, long-time scale conventional molecular
dynamics (CMD) simulations and enhanced-sampling techni-
ques have been used to study the binding of ligands to the
orthosteric pockets of GPCRs,7,8,17−20 in which the ligands all
progressed from the water phase into the extracellular crevice
within the helical bundles and the lipids did not play
fundamental roles in the binding process. To date, only a
small amount of research has investigated the association of
ligands, including cholesterol, with GPCRs via the membrane
environment.21−26 However, the binding sites in these
simulations are mostly intrahelical, the intermediate states
along the binding path could be different from those of the
extra-helical sites, and the significant role of the lipids has not
been clearly characterized yet. A comprehensive interpretation

of a ligand binding mechanism needs a detailed description of
the interplay among water, lipids, the ligand and its receptor,
and an accurate characterization of the underlying free energy
landscape. Noteworthy, the access of a ligand to its binding site
occurs in the time scale which is usually beyond the capability
of CMD, and more sophisticated techniques are thereby
required. Metadynamics is able to enhance sampling and
reconstruct the free energy surface (FES) afterward, thus it has
been widely used in ligand binding studies.8,18,27,28 With this
method, a history-dependent bias potential that acts on a
selected number of degrees of freedom, called collective
variables (CVs), is introduced to discourage the system from
revisiting the sampled configurations. The well-tempered
metadynamics (WT-MetaD) is an evolution of standard
metadynamics in which the height of the bias potential
introduced is decreased with the amount of bias already
deposited. Consequently, the resulting FES could be limited to
the low free energy regions which are physically meaningful.29

However, an accurate estimation of the binding affinity needs
several recrossing events between the bound and unbound
states, which remains challenging to WT-MetaD simulations
due to the large amount of unbound conformations to be
sampled. A recently developed metadynamics-based approach,
called funnel metadynamics (FM), has proven to be successful
in describing ligand/protein and ligand/DNA binding inter-
actions. FM places a funnel-shaped restraining potential on the
system so as to enclose the bound states in the cone region and
restrain the sampling of the solvated states in a cylinder. As
such, a number of back-and-forth events between the bound
and unbound states within an affordable computational time
become available, which results in a description of a statistically
accurate FES and a calculation of the accurate binding
affinity.30−32

P2Y1R, a class A GPCR, is activated by ADP to induce
platelet activation and is thus a promising target for design of
novel antithrombotic drugs. 1-(2-(2-(tert-Butyl) phenoxy)-
pyridin-3-yl)-3-(4-(trifluoromethoxy)phenyl)urea (BPTU) is a
novel antagonist of P2Y1R and was once developed for the
treatment of thrombosis.33 Due to the unique binding site of
BPTU and the importance of P2Y1R as a drug target, this
system has been recently studied with various computational
methods. In 2016, a CMD study was done in order to interpret
how BPTU acts as an antagonist of the receptor.34 Meanwhile,
based on the BPTU-P2Y1R structure, Xu et al. used the 2D
structural similarity search, pharmacophore based screening,
and molecular docking to identify new antagonists of P2Y1R
from traditional Chinese medicine (TCM).35 Later, Antonella
et al. performed molecular docking together with CMD studies
on P2Y1R and several antagonists, including BPTU, to
demystify the P2Y1R-ligand recognition.36 Nevertheless, in
these studies BPTU is always positioned in the binding site; the
comprehensive binding process of BPTU from a fully solvated
state to its final pose in the crystal structure of the complex has
not been investigated yet. To clearly reveal the molecular
mechanisms underlying the BPTU-P2Y1R recognition, funda-
mental questions such as how BPTU interacts with water/lipids
molecules before approaching the receptor, how BPTU initially
associates with the receptor, how BPTU could pave its way to
the binding site in the complicated water−lipid environment,
how BPTU interacts with key residues to lie itself into the
pocket with a favorable binding pose, and what the exact role of
lipids are in the recognition process must be addressed.

Figure 1. Crystal structure of the P2Y1R-BPTU complex and chemical
structures of BPTU, monoolein, and POPC. The protein is
represented by yellow cartoon and transparent molecular surface,
and BPTU is shown in blue sticks. The gray ovals indicate the upper
and lower boundary of the membrane.
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Funnel-Metadynamics Advanced Protocol
 (FMAP)

Ligand binding free-energy calculations with
funnel metadynamics
Stefano Raniolo 1 and Vittorio Limongelli 1,2✉

The accurate resolution of the binding mechanism of a ligand to its molecular target is fundamental to develop a
successful drug design campaign. Free-energy calculations, which provide the energy value of the ligand–protein binding
complex, are essential for resolving the binding mode of the ligand. The accuracy of free-energy calculation methods is
counteracted by their poor user-friendliness, which hampers their broad application. Here we present the Funnel-
Metadynamics Advanced Protocol (FMAP), which is a flexible and user-friendly graphical user interface (GUI)-based
protocol to perform funnel metadynamics, a binding free-energy method that employs a funnel-shape restraint potential
to reveal the ligand binding mode and accurately calculate the absolute ligand–protein binding free energy. FMAP guides
the user through all phases of the free-energy calculation process, from preparation of the input files, to production
simulation, to analysis of the results. FMAP delivers the ligand binding mode and the absolute protein–ligand binding free
energy as outputs. Alternative binding modes and the role of waters are also elucidated, providing a detailed description
of the ligand binding mechanism. The entire protocol on the paradigmatic system benzamidine–trypsin, composed of
~105 k atoms, took ~2.8 d using the Cray XC50 piz Daint cluster at the Swiss National Supercomputing Centre.

Introduction

Predicting the thermodynamic properties of the binding mechanism of a drug to its molecular
target is of primary relevance to shed light on its mechanism of action and develop new medications.
The main outcome of this process is the identification of the ligand binding mode and the
calculation of the ligand binding free energy. Several experimental techniques are able to calculate
binding thermodynamics and kinetics properties, such as dissociation constant, inhibition constant,
half maximal effective concentration (EC50), half inhibitory concentration (IC50) and kinetics
rate measurement (i.e., on-rate and off-rate constants)1. However, such approaches are typically
time demanding and cost inefficient, dissuading pharmaceutical companies from the investment
of human and financial resources. As an alternative, recently, in silico techniques have represented
an attractive and ‘cost-efficient’ strategy to provide useful information on protein–ligand
binding2–4.

Before introducing the FMAP protocol, it is helpful to report the definition of binding site,
binding mode and binding mechanism, which are frequently recalled in the document: 1) the binding
site is the region of the target molecule to which endogenous and exogenous ligands bind; 2) the
ligand binding mode is the representation of the ligand in its binding conformation at the binding
site; and 3) the binding mechanism is the route taken by the ligand to approach the binding site. It is
important to point out that a ligand might have more than one binding mode and alternative
binding mechanisms.

In 2013, we developed funnel metadynamics (FM; see ref. 5), which is a binding free-energy
method that simulates the binding process of a ligand from its fully solvated state to the final binding
site using a bias potential adaptively constructed as a sum of Gaussian functions in the space of
selected degrees of freedom called collective variables (CVs)6. This method allows identifying the
ligand binding mode and providing an accurate calculation of the absolute protein–ligand binding
free energy5. In addition, FM provides insight into the dynamics of the ligand binding mechanism,
including the presence of alternative ligand binding modes and other energetically relevant states
(e.g., binding rate limiting states). A detailed description of FM is provided in the ‘Development of the
method’ and ‘Comparison with other methods’ sections below.
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Ligand binding free-energy calculations with
funnel metadynamics
Stefano Raniolo 1 and Vittorio Limongelli 1,2✉

The accurate resolution of the binding mechanism of a ligand to its molecular target is fundamental to develop a
successful drug design campaign. Free-energy calculations, which provide the energy value of the ligand–protein binding
complex, are essential for resolving the binding mode of the ligand. The accuracy of free-energy calculation methods is
counteracted by their poor user-friendliness, which hampers their broad application. Here we present the Funnel-
Metadynamics Advanced Protocol (FMAP), which is a flexible and user-friendly graphical user interface (GUI)-based
protocol to perform funnel metadynamics, a binding free-energy method that employs a funnel-shape restraint potential
to reveal the ligand binding mode and accurately calculate the absolute ligand–protein binding free energy. FMAP guides
the user through all phases of the free-energy calculation process, from preparation of the input files, to production
simulation, to analysis of the results. FMAP delivers the ligand binding mode and the absolute protein–ligand binding free
energy as outputs. Alternative binding modes and the role of waters are also elucidated, providing a detailed description
of the ligand binding mechanism. The entire protocol on the paradigmatic system benzamidine–trypsin, composed of
~105 k atoms, took ~2.8 d using the Cray XC50 piz Daint cluster at the Swiss National Supercomputing Centre.

Introduction

Predicting the thermodynamic properties of the binding mechanism of a drug to its molecular
target is of primary relevance to shed light on its mechanism of action and develop new medications.
The main outcome of this process is the identification of the ligand binding mode and the
calculation of the ligand binding free energy. Several experimental techniques are able to calculate
binding thermodynamics and kinetics properties, such as dissociation constant, inhibition constant,
half maximal effective concentration (EC50), half inhibitory concentration (IC50) and kinetics
rate measurement (i.e., on-rate and off-rate constants)1. However, such approaches are typically
time demanding and cost inefficient, dissuading pharmaceutical companies from the investment
of human and financial resources. As an alternative, recently, in silico techniques have represented
an attractive and ‘cost-efficient’ strategy to provide useful information on protein–ligand
binding2–4.

Before introducing the FMAP protocol, it is helpful to report the definition of binding site,
binding mode and binding mechanism, which are frequently recalled in the document: 1) the binding
site is the region of the target molecule to which endogenous and exogenous ligands bind; 2) the
ligand binding mode is the representation of the ligand in its binding conformation at the binding
site; and 3) the binding mechanism is the route taken by the ligand to approach the binding site. It is
important to point out that a ligand might have more than one binding mode and alternative
binding mechanisms.

In 2013, we developed funnel metadynamics (FM; see ref. 5), which is a binding free-energy
method that simulates the binding process of a ligand from its fully solvated state to the final binding
site using a bias potential adaptively constructed as a sum of Gaussian functions in the space of
selected degrees of freedom called collective variables (CVs)6. This method allows identifying the
ligand binding mode and providing an accurate calculation of the absolute protein–ligand binding
free energy5. In addition, FM provides insight into the dynamics of the ligand binding mechanism,
including the presence of alternative ligand binding modes and other energetically relevant states
(e.g., binding rate limiting states). A detailed description of FM is provided in the ‘Development of the
method’ and ‘Comparison with other methods’ sections below.
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The accurate resolution of the binding mechanism of a ligand to its molecular target is fundamental to develop a
successful drug design campaign. Free-energy calculations, which provide the energy value of the ligand–protein binding
complex, are essential for resolving the binding mode of the ligand. The accuracy of free-energy calculation methods is
counteracted by their poor user-friendliness, which hampers their broad application. Here we present the Funnel-
Metadynamics Advanced Protocol (FMAP), which is a flexible and user-friendly graphical user interface (GUI)-based
protocol to perform funnel metadynamics, a binding free-energy method that employs a funnel-shape restraint potential
to reveal the ligand binding mode and accurately calculate the absolute ligand–protein binding free energy. FMAP guides
the user through all phases of the free-energy calculation process, from preparation of the input files, to production
simulation, to analysis of the results. FMAP delivers the ligand binding mode and the absolute protein–ligand binding free
energy as outputs. Alternative binding modes and the role of waters are also elucidated, providing a detailed description
of the ligand binding mechanism. The entire protocol on the paradigmatic system benzamidine–trypsin, composed of
~105 k atoms, took ~2.8 d using the Cray XC50 piz Daint cluster at the Swiss National Supercomputing Centre.

Introduction

Predicting the thermodynamic properties of the binding mechanism of a drug to its molecular
target is of primary relevance to shed light on its mechanism of action and develop new medications.
The main outcome of this process is the identification of the ligand binding mode and the
calculation of the ligand binding free energy. Several experimental techniques are able to calculate
binding thermodynamics and kinetics properties, such as dissociation constant, inhibition constant,
half maximal effective concentration (EC50), half inhibitory concentration (IC50) and kinetics
rate measurement (i.e., on-rate and off-rate constants)1. However, such approaches are typically
time demanding and cost inefficient, dissuading pharmaceutical companies from the investment
of human and financial resources. As an alternative, recently, in silico techniques have represented
an attractive and ‘cost-efficient’ strategy to provide useful information on protein–ligand
binding2–4.

Before introducing the FMAP protocol, it is helpful to report the definition of binding site,
binding mode and binding mechanism, which are frequently recalled in the document: 1) the binding
site is the region of the target molecule to which endogenous and exogenous ligands bind; 2) the
ligand binding mode is the representation of the ligand in its binding conformation at the binding
site; and 3) the binding mechanism is the route taken by the ligand to approach the binding site. It is
important to point out that a ligand might have more than one binding mode and alternative
binding mechanisms.

In 2013, we developed funnel metadynamics (FM; see ref. 5), which is a binding free-energy
method that simulates the binding process of a ligand from its fully solvated state to the final binding
site using a bias potential adaptively constructed as a sum of Gaussian functions in the space of
selected degrees of freedom called collective variables (CVs)6. This method allows identifying the
ligand binding mode and providing an accurate calculation of the absolute protein–ligand binding
free energy5. In addition, FM provides insight into the dynamics of the ligand binding mechanism,
including the presence of alternative ligand binding modes and other energetically relevant states
(e.g., binding rate limiting states). A detailed description of FM is provided in the ‘Development of the
method’ and ‘Comparison with other methods’ sections below.
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