

PLUMED Masterclass 2022

31 January 2022

Ligand Binding Free-Energy Calculations with Funnel-Metadynamics

Life is Dynamics

Source: wikimedia commons

...including proteins and DNA

Limongelli et al., PNAS (2010)

Limongelli et al., Angew. Chem. Int. Ed. (2013)

Life is Dynamics

What if we neglect dynamics?

Life is Dynamics

Molecular Binding

 \checkmark K_b can be measured by experiments

 $\checkmark K_b$ is correlated to ΔG_{bind} as follows:

*
$$\Delta G_{bind} = G_{[LP]} - G_{[L][P]} = -k_b T \ln K_b$$

* in case of competitive inhibitors

Limongelli WIREs Comput. Mol. Sci. (2020) Gilson, Zhou. Annu Rev Biophys Biomol Struct (2007)

Molecular Binding

$$\Delta G_{bind} = G_{[LP]} - G_{[L][P]} = -k_b T \ln K_b$$

Reaction Coordinate

$$\Delta G^{0} = \mu_{LP} - \mu_{L} - \mu_{P} = -k_{b}Tln \left(\frac{C^{0}}{8\pi^{2}} \frac{\int e^{-(U(rLP) + S(rLP) / k_{b}T)} dr_{(LP)}}{(\int e^{-(U(rL) + S(rL) / k_{b}T)} dr_{(L)})(\int e^{-(U(rP) + S(rP) / k_{b}T)} dr_{(P)})} \right)$$

Limongelli WIREs Comput. Mol. Sci. (2020) Gilson, Zhou. Annu Rev Biophys Biomol Struct (2007)

Computational Methods

Gilson, Zhou. Annu Rev Biophys Biomol Struct (2007)

Outline of the Class

√Funnel-Metadynamics (FM)

- Ligand/Protein binding free-energy
- Ligand/Protein binding kinetics
- Funnel-Metadynamics Automated Protocol (FMAP)

Funnel metadynamics as accurate binding free-energy method

2013

Vittorio Limongelli^{a,1}, Massimiliano Bonomi^b, and Michele Parrinello^{c,d,1}

^aDepartment of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; ^bDepartment of Bioengineering and Therapeutic Sciences, and California Institute of Quantitative Biosciences, University of California, San Francisco, CA 94158; ^cDepartment of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), 8006 Zürich, Switzerland; and ^dFacoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland

Further Reading: Raniolo & **Limongelli** *Nature Protocols* (2020) **Limongelli** and co. *PNAS* (2017)

Limongelli et al. PNAS (2010) **Limongelli** et al. PNAS (2012) Grazioso, **Limongelli** et al. JACS (2012)

Theory in the Class

- Metadynamics and Well-Tempered Metadynamics
- Collective Variables (CVs)
- Variational Approach to Conformational dynamics (VAC) Metadynamics
- Funnel-Metadynamics (FM)
- Infrequent Metadynamics (IM)
- Path Collective Variables (PCV)
- Multiple Walker Simulations
- Reweigthing the Boltzmann distribution in not-biased CV space

The Time Scale Issue

- MD timestep ~ I fs (bond-stretching, bending,...)
- Biologically relevant processes (ligand binding, protein/DNA folding...) > 10¹ μ s

Dimensional Reduction

Major advantage: Analysis of q-space trajectories by means of modeling dynamics in s-space

Metadynamics

$$V_{G}(\boldsymbol{S},t) = \int_{0}^{t} dt' \, \omega \exp\left(-\sum_{i=1}^{d} \frac{(S_{i}(\boldsymbol{R}) - S_{i}(\boldsymbol{R}(t')))^{2}}{2\sigma_{i}^{2}}\right)$$

bias rate $\omega = \frac{W}{\tau_{G}}$ Gaussian height
 $V_{G}(\boldsymbol{S}, t \to \infty) = -F(\boldsymbol{S}) + C$

$$\int_{0}^{d} \frac{(S_{i}(\boldsymbol{R}) - S_{i}(\boldsymbol{R}(t')))^{2}}{2\sigma_{i}^{2}}$$

$$Gaussian width$$

$$Gaussian width$$

$$\int_{0}^{ree} \frac{e_{energy}}{e_{energy}} + e_{energy}$$

variable

Well-Tempered Metadynamics

$$F(s,t) = -\frac{T + \Delta T}{\Delta T} V(s,t)$$

NSAIDs Mechanism of Action

Limongelli et al. PNAS (2010)

SC-558 activities: IC₅₀(COX-1) = 17.7 μM IC₅₀(COX-2) = 9.3 nM

Model for COX-2 Diarylheterocycle Binding

FIGURE 7: Three-step model of SC299 binding to COX-2. SC299 binds in the lobby region in the first step, moves past the constriction comprised of Arg120, Tyr355, and Glu524 in the second step, and then inserts into the side pocket bordered by Val523 in the third step. Insertion into the side pocket accounts for the stability of SC299 binding and the stability of inhibition.

Lanzo et al., Biochemistry (2000)

Protein/Ligand Binding

Problems in converging the free energy in the unbound region

Limongelli et al. PNAS (2010)

Protein/Ligand Binding

Facoltà di scienze biomediche

Rcyl

Funnel-Metadynamics

$$\Delta G_b^0 = -\frac{1}{\beta} ln(C^0 \ K_b)$$

References:

* Allen et al., PNAS (2004); Roux et al., J. Chem. Phys. (2008)

** Limongelli, Bonomi & Parrinello, PNAS (2013)

Funnel-Metadynamics (FM)

$$\Delta G_b^0 = -\frac{1}{\beta} ln(C^0 K_b)$$

US

References:

* Allen et al., PNAS (2004); Roux et al., J. Chem. Phys. (2008)
** Limongelli, Bonomi & Parrinello, PNAS (2013)

Trypsin/Benzamidine Binding with FM

Funnel-Metadynamics code available on my website and GitHub: https://sites.google.com/view/vittoriolimongelli/software?authuser=0

Ligand Binding Free Energy

Brotzakis, Limongelli & Parrinello JCTC (2019)

22

What about Ligand Kinetics?

What about Ligand Kinetics?

Figure 2 | **Drug affinity (target potency) is often driven by drug-target residence time.** Correlation between the dissociation rate constant (k_{off} ; orange circles) or association rate constant (k_{on} ; green circles) with the equilibrium dissociation constant (K_{d}) for biotin binding to wild-type and mutant forms of streptavidin¹⁶ (part **a**), saquinavir binding to wildtype and resistant mutants of HIV protease¹⁷ (part **b**), and a series of aminonucleoside inhibitors binding to the protein methyltransferase DOT1L¹⁸ (part **c**).

Copeland Nature Review Drug Discovery (2016)

U

Infrequent Metadynamics

References:

Tiwary & Parrinello, *PRL* 2013 Salvalaglio, Tiwary & Parrinello, *JCTC* 2014 Grubmueller, *PRE* 1995; Voter, *JCP* 1997 **Acceleration factor**

koff from Unbinding Trajectories

koff and Rate-Determining Step

Tiwary, Limongelli, Salvalaglio, Parrinello PNAS (2015)

Ligand Binding Kinetics to Kinase

Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations

Rodrigo Casasnovas,[†][©] Vittorio Limongelli,^{#,‡,§} Pratyush Tiwary,^{#,||} Paolo Carloni,^{*,†} and Michele Parrinello^{*,⊥}

PRXV Inhibitors

Table 1. Comparison of Calculated and Experimental Dissociation Constants K_D and Absolute Binding Free Energy $\Delta G_b^{\ 0}$ of Catechol and 4-Methylcatechol for Human PRX5

	catechol	4-methylcatechol
$\Delta G_{ m b}^{\ 0 a}$		
FM^{b}	-3.0 ± 0.2	-4.2 ± 0.3
NMR	-3.2 ± 0.1	-4.1 ± 0.1
$K_{\rm D}~(10^{-3})$		
$\mathrm{FM}^{\mathcal{b}}$	6.9 ± 2.1	0.9 ± 0.4
NMR	4.5 ± 0.6	1.0 ± 0.2
^{<i>a</i>} kcal/mol. ^{<i>b</i>} Mean value over the last 100 ns of 500 ns FM.		

Troussicot, Guillere, **Limongelli**, Walker, Lancelin JACS (2015)

Fruit Fly Resistance to Dieldrin PLGIC

Comitani, **Limongelli**, Molteni, *JCTC* (2016)

Ligand/Protein Binding

What if we have large protein conformational changes? (configurational entropy)

Adenosine DeAminase (ADA)

Helix displacement in the apo and bound X-ray structure

Sampling protein motion and solvent effect during ligand binding

2012

Vittorio Limongelli^{a,b,c,1}, Luciana Marinelli^c, Sandro Cosconati^d, Concettina La Motta^e, Stefania Sartini^e, Laura Mugnaini^e, Federico Da Settimo^e, Ettore Novellino^c, and Michele Parrinello^{a,b,1}

^aDepartment of Chemistry and Applied Biosciences, Computational Science, Eidgenössiche Technische Hochschule (ETH), Zürich, Switzerland; ^bInstitute of Computational Science (ICS), Università della Svizzera Italiana, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland; ^cDipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy; ^dDipartimento di Scienze Ambientali, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy; and ^eDipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno, 6, I-56126 Pisa, Italy

Path Collective Variables

•s(R)* allows the system to go from state A (closed) to state B (open)**

 $s(\mathbf{R}) = \lim_{\lambda \to \infty} \frac{\int_0^1 t e^{-\lambda (\mathbf{R} - \mathbf{R}(t))^2} dt}{\int_0^1 e^{-\lambda (\mathbf{R} - \mathbf{R}(t))^2} dt}$

•z(R)* allows exploring states far from the guess path

$$z(\mathbf{R}) = \lim_{\lambda \to \infty} -\frac{1}{\lambda} \ln \int_0^1 e^{-\lambda (\mathbf{R} - \mathbf{R}(t))^2} dt.$$

* Branduardi et al. JCP (2007); Bonomi et al. JACS (2008); Ren et al. JCP (2005) ** Closed and open state defined by the available X-ray ADA structures

Path Collective Variables

The ADA Movie

Limongelli et al. PNAS (2012)

The Binding Mode

The ligand binds to ADA in the open conformation

- closed X-ray
- open X-ray
- open metadynamics

Limongelli et al. *PNAS* (2012)

Reweighting the FES

The Boltzmann probability distribution for different CVs can be computed as:

 $P_B(\mathbf{R}) \propto e^{+\beta V_G(\mathbf{S}(\mathbf{R}),t)} P(\mathbf{R},t)$

Bonomi et al. JCC (2009)

$$I_{\text{IntWat}} = \sum_{i}^{n_0} \left(\frac{1 - \left(\frac{|\mathbf{r}_i - \mathbf{r}_1|}{r_0}\right)^n}{1 - \left(\frac{|\mathbf{r}_i - \mathbf{r}_1|}{r_0}\right)^m} \right) \left(\frac{1 - \left(\frac{|\mathbf{r}_i - \mathbf{r}_2|}{r_0}\right)^n}{1 - \left(\frac{|\mathbf{r}_i - \mathbf{r}_2|}{r_0}\right)^m} \right)$$

Ligand/G-quadruplex DNA

Limongelli and co. *PNAS* (2017)

Allostery in the P2Y₁ GPCR

Yuan, Raniolo, **Limongelli**, Xu, *JCTC* (2018)

Allostery in HSP90

D'Annessa, Raniolo, **Limongelli**, Di Marino, Colombo JCTC (2019)

Funnel-Metadynamics Advanced Protocol (FMAP)

Ligand binding free-energy calculations with funnel metadynamics

Stefano Raniolo⁰¹ and Vittorio Limongelli^{0,2}[∞]

I. Pre-processing

2. FM Simulation

3. Post-processing

Funnel-Metadynamics Advanced Protocol (FMAP)

Raniolo & Limongelli Nature Protocols (2020)

Apply Changes Autor atically Apply

Funnel-Metadynamics Advanced Protocol (FMAP)

 nature protocols
 2020
 PROTOCOL

 https://doi.org/10.1038/s41596-020-0342-4
 Image: Check for updates

Ligand binding free-energy calculations with funnel metadynamics

Stefano Raniolo⁰¹ and Vittorio Limongelli^{0,2}[∞]

I. Pre-processing

2. FM Simulation

3. Post-processing

Funnel-Metadynamics Advanced Protocol (FMAP)

Ligand binding free-energy calculations with funnel metadynamics

Stefano Raniolo⁰¹ and Vittorio Limongelli^{0,2}[∞]

I. Pre-processing

2. FM Simulation

3. Post-processing

Funnel-Metadynamics (FM) + FMAP

https://sites.google.com/view/vittoriolimongelli/software?authuser=0

Limongelli, Bonomi, Parrinello PNAS (2013) Raniolo, **Limongelli** *Nat. Protoc.* (2020)

Bonomi, Bussi, Camilloni, Tribello... Limongelli et al. Nature Methods (2019)