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Figure 2. Early attempt at listing and classifying existing enhanced
sampling schemes.

is:
P(⌃) =

Z

⌃
µ(x,p)dxdp (6)

Most cases are described by a separable Hamiltonian,
meaning that the energy is a sum of a potential term that
depends only on positions and a kinetic term that depends
only on momenta. Then the momenta are statistically
independent from the system con�guration, hence their dis-
tribution is that of the ideal gas and does not bear signi�cant
information on any speci�c system. This leads to a simple
expression for the con�gurational distribution, where the
momenta and kinetic energy do not appear:

⌫(x) =
Z

µ(x,p)dp = 1
Z
e–�U(x) (7)

where Z is the con�gurational partition function. Sometimes,
it may also be useful to de�ne an unnormalized version of
the con�gurational distribution, q(x), such that ⌫(x) = 1

Z q(x).
There exist equivalent de�nitions of distributions for the
isothermal-isobaric ensemble (NPT), which can be found in
most statistical mechanics books.[19, 20]

Note that there are other notation conventions: in some
texts and papers, Q denotes the con�gurational partition
function and Z denotes the con�gurational and momenta
partition function.

Macrostate
Macrostates are experimentally distinguishable or measur-
able states of a system. They can be described formally
either in terms of the thermodynamic state variables (E, T ,

P, V , or parameters of the Hamiltonian) or by specifying
speci�c regions of con�guration space (that is, disjoint sets
of microstates). A macrostate, besides being just a collection
of microstates, also speci�es a probability associated with
each microstate that is contained in the microstate. The
term “thermodynamic state" is often used synonymously
with macrostate, as the macrostates that we are most gen-
erally interested in studying with molecular simulation are
macrostates that are completely de�ned by the speci�cation
of the macroscopic thermodynamic variables.

Free energy
In the canonical ensemble, the Helmholtz free energy F is a
property of macrostate of a system, and is proportional to
the logarithmof its partition function, whichmeasures its sta-
tistical weight compared to other macrostates:

F / –�–1 ln Z⌃ = –�–1 ln
Z

⌃
e–�U(x) dx, (8)

where the integration is done over a subset ⌃ of con�gura-
tional space corresponding to the macrostate. F is thus a
function of ⌃, U(x), and �, though often what the values of
these variables is assumed by the context.

When using a classical energy function, F is only de�ned
up to an arbitrary additive constant. In practice, this is not a
limitation, as one is generally interested in free energy di�er-
ences between two macrostates, rather than absolute free
energies. If two macrostates A and B can be distinguished
experimentally, the ratio of their probabilities (PA = ZA/Z and
PB = ZB/Z) is an experimental observable, and so is the free
energy di�erence:

�FA,B = FA – FB

= –�–1 ln ZA
ZB

= –�–1 ln PA
PB

(9)

The Helmholtz free energy is sometimes notated A in the
literature. In this review, we will use F for Helmholtz free en-
ergy, and the the symbol A will be used for the free energy
surface. Gibbs free energy G is the equivalent quantity in the
isothermal-isobaric ensemble.

Free energy estimator
An expression or algorithm that takes simulation data and
estimates a numerical value for free energies or their di�er-
ences. See Section 3 for a list and description of useful free
energy estimators.

Reduced quantities for homogeneous treatment of
di�erent ensembles
We de�ne the reduced energy function ui(x) for state i to be

ui(x) = �i(Ui(x) + piV (x)) (10)
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Figure 1. An attempt at classifying enhanced sampling schemes, answering yes/no questions that delineate various strategies based on
physical or statistical principles (black diamonds). The sorting algorithm results in eight di�erent classes of methods (black boxes). The
section of the review describing the family of methods is shown in blue below the corresponding box. Labels in orange refer to families of
methods that can be grouped under an umbrella term.

where G is a Gaussian-distributed stochastic 3N-vector of
zero mean and variance 1. Note that in practice, more
sophisticated discrete Langevin integration schemes are
used, which bring much better accuracy, stability, and
performance [17, 18]. Still, comparing the simple-minded
Equations 2 and 4 shows that Langevin dynamics can be
interpreted intuitively as similar to Hamiltonian dynamics,
but including a modi�ed force with added friction and
stochastic collision terms. When � is zero, it reduces exactly
to Hamiltonian dynamics. Note that there are many other
possible thermostats that can be replace Hamiltonian dy-
namics, each with di�erent numerical bene�ts and pitfalls.
Note that some historic algorithmsmaintain an approximate
target temperature, but do not sample from the canonical
ensemble. Isothermal-isobaric dynamics also includes a
barostat, producing volume �uctuations consistent with a

given target pressure P, and samples the isothermal-isobaric
ensemble (NPT). Again, there exists a variety of equations
of motions with this property, and numerical algorithms
implementing them. Langevin dynamics will be used as a
basic example in later sections of this review.

Distribution
The Boltzmann distribution (which characterizes the canon-
ical ensemble) in phase space has the following probability
density:

µ(x,p) = 1
Q
e–�(U(x)+K (p)) (5)

where Q =
Z
e–�(U(x)+K (p))dxdp is the normalization factor,

known as partition function.
The physical meaning of µ is a probability per unit volume

of (x,p) space. The probability of a region of phase space ⌃
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Simulated annealing, simulated tempering,
and parallel tempering (T-REMD)

Kirkpatrick et al, Science (1983)
Marinari and Parisi, EPL (1992)
Hansmann, CPL (1997)

Sugita and Okamoto, CPL (1999)



Replica exchange

α = min (1,
Pi(xj)Pj(xi)
Pi(xi)Pj(xj) )

α = min (1,eΔβΔU)Different temperatures

Different potentials α = min (1,e−β(Ui(xj)+Uj(xi)−Ui(xi)−Uj(xj)))

Acceptance:

Every Nx steps, propose a coordinate swap.

Exchange pattern depends on chosen ensembles.

The method is an equilibrium method. Since exchanges satisfy detailed balance, 
there’s no need to equilibrate after an exchange has been accepted.

versus the correct, analytical solution is shown in Table 1.
The trend is the same as with the molecular simulations in
this and previous studies, clearly supporting the idea that
larger EAFs are better than small ones.

None of these results should be surprising considering the
fact that replica exchanges are not fundamentally different
than any other MC move. Just as in MC, the more moves,
the better, such is the case of replica exchange attempts.

4.4. Recommendations. Considering the many critiques
of REMD mentioned in Section 2, along with the comple-
mentary evidence above, we emphasize that the most proper
way to perform replica exchanges is as follows:

• Use a canonical thermostat (such as Langevin, Andersen,
or Nose-Hoover).21

• Utilize a reasonable temperature distribution (as described
in the Theory section).18–20

• Rescale velocities after the exchange if using potential
energy in the MC exchange criterion.3

• Utilize an exchange algorithm within the MD engine.
• Attempts exchanges as often as possible.*

We note that the simulator should always question the
computational efficiency of an exchange in their particular
algorithm and hardware. Algorithms with computationally
expensive exchanges (such as those performed in an external
wrapper) may not afford frequent exchanges and should be
upgraded. The computationally efficient exchanges in AM-
BER10 (and above) allow for high EAFs and thus we found
that exchanging every 10-100 steps is a good balance
between sampling and computational efficiency. Furthermore,
if any of the criteria above are violated, the use of high EAF
could exacerbate the respective detrimental effects (as
described above and within the cited references).

5. Conclusions

Despite strong evidence in prior studies that REMD using
high EAFs are optimal for fastest sampling, questions
remained about the consistency of this result for explicit
solvent systems. Here, a similar study to the original, implicit
solvent study7 shows that the trend also holds for explicit
solvent systems. This new work should resolve many
remaining questions about the effect of EAF on REMD
simulations. Combined with the extensive analysis of the
study, we strongly conclude that for any system where
REMD exchanges are performed properly, as described
above, maximum sampling efficiency can be obtained by
attempting to exchange as often as possible. We also detailed
many of the ways REMD simulations were performed
improperly.
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thank Kevin Hauser for his initial work on these systems.

References

(1) Marinari, E.; Parisi, G. Simulated temperingsA new
Monte-Carlo scheme. Europhys. Lett. 1992, 19 (6), 451-
458.

Figure 3. (a,b) Linear-log plot of deviation vs time for various EAFs. (a) (Ala)3. (b) (Ala)7.

Figure 4. Average number of round trips per replica between
the lowest and highest temperature for both the (Ala)3 and
(Ala)7 simulations within 10 ns. The error is calculated as the
standard deviation between individual replica counts.

Table 1. Population Error Vs Correct Distributiona

EAF (per MC step) 0.0001 0.001 0.01 0.1 1
population error (10-3) 677 590 255 39 8

a Error is RMSD between bin populations. The bin width is 0.1.

Proper Exchanging in REMD J. Chem. Theory Comput., Vol. 6, No. 9, 2010 2807

Nx can be as small as one wishes. In most cases, 
the smallest the better* (though one should 
balance with computational overhead).


Much smaller than “autocorrelation time” is 
usually not giving much advantage.


*Sindhikara et al JCTC (2010) From Masterclass 21.5
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Solute tempering aka REST2
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Replica Exchange with Solute Scaling: A More Efficient Version of
Replica Exchange with Solute Tempering (REST2)
Lingle Wang, Richard A. Friesner, and B. J. Berne*

Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States

’ INTRODUCTION

Sampling the conformational space of complex biophysical
systems, such as proteins, remains a significant challenge, because
the barriers separating the local energy minima are usually much
higher than kBT, leading to kinetic “trapping” for long periods
of time and quasi-ergodicity in the simulations. The Temperature
Replica Exchange Method (TREM) has attracted attention
recently as a means for overcoming the problem of quasi-
ergodicity.1!6 However, the number of replicas required to get
efficient sampling in normal TREM scales as f1/2, where f is the
number of degrees of freedom of the whole system, which often
limits the applicability of TREM for large systems. To overcome
this problem, we recently devised the method “Replica Exchange
with Solute Tempering’’ (REST1),7 in which only the solute
biomolecule is effectively heated up while the solvent remains
cold in higher temperature replicas, so that the number of the
replicas required is greatly reduced. It has been shown that the
required number of replicas in REST1 scales as (fp)

1/2, where fp is
the number of degrees of freedom of the solute, and the speedup
versus the TREM, in terms of converging to the correct under-
lying distribution, is O(f/fp)

1/2 for small solutes such as alanine
dipeptide.7 However, when applying REST1 to large systems
involving large conformational changes, such as the trpcage andβ
hairpin, it was found that REST1 can be less efficient than
TREM.8 For example, we observed that the lower temperature
replicas stayed in the folded structure, the higher temperature
replicas stayed in the extended structure, and the exchange
between those two conformations was very low.8 Moors et al.9

and Terakawa et al.10 independently modified our REST1 scaling

factor for Epw so that the approach could be easily run in
GROMACS. Moors et al. included only part of the protein in
the “hot region”, keeping the rest of it “cold”, and called their
method “Replica Exchange with Flexible Tempering’’ (REFT).
Interestingly, they observed an improved sampling efficiency in
sampling a particular reaction coordinate involving the opening
and closing of the binding pocket in T4 lysozyme and suggested
that the improved sampling efficiency for their method over
REST1 occurred because in REST1 all of the protein degrees of
freedom contribute to the acceptance probability for replica
exchange, whereas in REFT only those degrees of freedom
involved in the opening and closing of the pocket contribute.
Thus the acceptance probability for replica exchange is larger in
REFT than in REST1. As we shall see, this is not the only reason
for the observed improvement.

In this paper we use the modified scaling of the Hamiltonians
suggested by Moors et al.9 and Terakawa et al.10 instead of
the original scaling of our REST1, to see if it samples the folded
and unfolded conformations of proteins more efficiently than
REST1, although all of the protein degrees of freedom are
allowed to be hot in this study. For simplicity, we call REST
with this new scaling REST2. Application of REST2 to the
trpcage and the β-hairpin systems, the same systems that were
problematic when sampled by REST1, indicates that REST2 is
much more efficient than REST1 in sampling the conformational

Received: May 11, 2011
Revised: June 16, 2011

ABSTRACT: A small change in the Hamiltonian scaling in
Replica Exchange with Solute Tempering (REST) is found
to improve its sampling efficiency greatly, especially for the
sampling of aqueous protein solutions in which there are large-
scale solute conformation changes. Like the original REST
(REST1), the new version (which we call REST2) also bypasses
the poor scaling with system size of the standard Temperature
Replica Exchange Method (TREM), reducing the number of
replicas (parallel processes) from what must be used in TREM.
This reduction is accomplished by deforming the Hamiltonian
function for each replica in such a way that the acceptance
probability for the exchange of replica configurations does not
depend on the number of explicit water molecules in the system. For proof of concept, REST2 is compared with TREM and with
REST1 for the folding of the trpcage and β-hairpin in water. The comparisons confirm that REST2 greatly reduces the number of
CPUs required by regular replica exchange and greatly increases the sampling efficiency over REST1. This method reduces the CPU
time required for calculating thermodynamic averages and for the ab initio folding of proteins in explicit water.
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To be specific, in REST2, all of the replicas are run at the same
temperature T0, but the potential energy for replica m is scaled
differently:

EREST2m ðXÞ ¼ βm
β0

EppðXÞ þ

ffiffiffiffiffiffi
βm
β0

s

EpwðXÞ þ EwwðXÞ ð3Þ

In REST1, enhanced sampling of the protein conformations is
achieved by increasing the temperature of the protein, but
between attempted exchanges with neighboring replicas, replica
m moves on the full intramolecular protein potential energy
surface with high energy barriers, although the other energy terms
are scaled. In REST2, enhanced sampling is achieved through
scaling the intramolecular potential energy of the protein by
(βm/β0), a number smaller than 1, so that the barriers separating
different conformations are lowered. Thus between attempted
replica exchanges, replica m moves on a modified potential
surface where the barriers in the intra protein force field are
reduced by the scaling. We call REST with this new scaling
“Replica Exchange with Solute Scaling’’ (REST2). Thus REST1
and REST2 arrive at the final distribution at temperature T0 by
different but rigorously correct routes. The acceptance criteria
for replica exchanges are different in REST1 and REST2, but the
Hamiltonians for themolecular dynamics (MD) trajectories are also
different in such a way that the long-time sampling at T0 should
converge to the same ensemble for REST1 and REST2, albeit with
different rates of convergence for the two methods. In REST2, the
differences between different replicas are the different scaling factors
used, but to make connections with REST1, we will keep using the
term “temperature” for replica m, which means the effective tem-
perature of the protein with the unscaled potential energy.

Note that the scaling factor used in REST2 for the interaction
energy between the solute and water for replica m is (βm/β0)

1/2,
which is different from (β0 + βm)/2β0 used in REST1 (eq 1).
The interaction energy in eq 3 can be easily achieved by scaling
the bonded interaction energy terms, the Lennard-Jones (LJ) ε
parameters, and the charges of the solute atoms by (βm/β0),
(βm/β0), and (βm/β0)

1/2, respectively, and the scaling factor for
the Epw term, (βm/β0)

1/2, follows naturally from standard combi-
nation rules for LJ interactions. This minor change of the scaling
factor for the Epw term, suggested in the original REST paper but
not appreciated at that time, proves to be important for the better
performance of the REST2. In addition, we find that scaling the
bond stretch and bond angle terms does not help the sampling,
so in practice only the dihedral angle terms in the bonded
interaction of the solute are scaled, and this makes the transition
between different conformations of the solute faster.

Another consequence of the different scaling factors used for
the Epw term in REST1 and REST2 is the different acceptance
ratio formulas in these two methods. It is easy to show by impos-
ing detailed balance conditions that the acceptance ratio for
exchange between replicas m and n in REST2 is determined by

ΔmnðREST2Þ ¼ ðβm % βnÞ

"

ðEppðXnÞ % EppðXmÞÞ

þ
ffiffiffiffiffi
β0

p
ffiffiffiffiffiffi
βm

p
þ

ffiffiffiffiffi
βn

p ðEpwðXnÞ % EpwðXmÞÞ

#

ð4Þ

For replica m, the exchanges to neighboring replicas m % 1
and m + 1, are determined by the fluctuation of Epp +

(β0)
1/2/((βm)

1/2 + (βm%1)
1/2)Epw and Epp + (β0)

1/2/((βm)
1/2 +

(βm+1)
1/2)Epw, respectively. Thus for discussion purposes, but

not in the simulations, the fluctuation of Epp + (1/2)(β0/βm)
1/2

Epw can be thought to determine the acceptance ratios for
exchanges of the replica at temperature Tm to neighboring
replicas because, to a good approximation, βm%1 ≈ βm ≈ βm+1.
Note then that the difference in the acceptance ratio formulas
between REST1 and REST2 lies in the replacement of the factor
1/2 by the factor (1/2)(β0/βm)

1/2 multiplying the term Epw.
This difference is also partly responsible for the improvement of
REST2 over REST1 due to an approximate cancellation of Epp
and the scaled Epw in the acceptance probability or equivalently
in Δnm of REST2 but not in REST1, as we shall see.

’RESULTS AND DISCUSSION

Using REST2, we simulated the trpcage system with
DESMOND13 using 10 replicas with effective temperatures of
the solute at 300, 322, 345, 368, 394, 423, 455, 491, 529, and 572 K.
The OPLS-AA force field14 was used for the protein, and the
Tip4p model15 was used for water. All the replicas were started
from the “native” NMR structure (PDB ID 1L2Y)16 and the
simulation lasted for 20 ns. Conformations of the protein were
saved every 0.5 ps, and exchange of configurations between
neighboring replicas are attempted every 2 ps with an average
acceptance ratio of about 30%.

Four representative temperature trajectories for the trpcage
replicas started at 300, 368, 455, and 572 K in the folded state
are displayed in Figure 1. It can be seen that the temperature
trajectory for each replica visits all of the temperatures many
times, even during the first 5 ns of the simulation, and all of the
replicas visit any given temperature many times during the
simulation. This is a good indication of the efficiency of the
sampling. By comparison, none of the temperature trajectories
using REST1 were able to visit all of the temperatures during a
5 ns simulation for the same system (see Figure 6b in ref 8). In
REST2 the time interval for attempted exchange was 2 ps, while
in the REST1 simulation 0.4 ps was used. We expect that even
more rapid diffusion in temperature space could be achieved if

Figure 2. Protein heavy atom rms deviation from the native structure
as a function of simulation time for replicas with different effective
temperatures of the protein for the trpcage system. Inset of the figure
highlights the rmsd for replica at effective temperature 300 K in the first
5 ns of the simulation.

See Liu et al PNAS (2005) for REST1

Wang et al, JPCB (2011)

Hence, in our case, L is equal 2, and eq 7 becomes

where V1 represents the sum of all LJ protein-solvent
interactions and electrostatic interactions between side-chain
and main-chain atoms as well as between side-chain atoms
and the solvent. V2 accounts for the sum of LJ interactions
between protein atoms and electrostatic interactions between
side-chain atoms. Charges and LJ parameters of all solvent
particles, including ions, were left unchanged. The spacing
between factors f was chosen such that they would decrease
roughly exponentially, and their exact values were tuned,
by means of few short trial simulations, to yield exchange
probabilities of roughly 20%. Seven modified force fields
were thus generated, with f values of 0.965, 0.931, 0.898,
0.867, 0.837, 0.808, and 0.780. They were used, along with
the unmodified GROMOS 43a1 force field, to run a 100 ns
H-REMD simulation on eight replicas, starting from the same
initial structure as that in the LCMD simulation, and
attempting pairwise replica exchanges every 10 ps. Protein
coordinates were saved every 50 fs, and the initial 25 ns of
the simulation were omitted for analysis, unless otherwise
stated. This simulation was run on a cluster consisting of
eight dual-processor Pentium III (750 MHz) nodes.
2.3. Weighted Histogram Analysis Method. Data pro-

duced during REMD simulations can be combined using
the weighted histogram analysis method (WHAM).39,40
The algorithm was originally developed for umbrella-
sampling simulations but can easily be adapted to our
H-REMD approach by reformulating the potential-energy
function corresponding to the ith force field in the following
way:

where E0 is the potential energy computed with the unmodi-
fied force field, while the scaling factor fi and the potentials
V1 and V2 are like those in eq 9. This form of the potential-
energy function corresponds to that used in umbrella-
sampling simulations.
Since we performed our H-REMD simulation at a constant

temperature, the WHAM equations become independent of
the value of E041 and can be formulated in terms of the values
of the biasing potentials V1 and V2 only:

where R is the number of replicas, n the number of snapshots
used for the analysis, gi a dimensionless free energy for the
force field i, and V(1,2),t

(k) represents the value of the biasing
potential for replica k at time t. After iterating the set of
equations in eq 11 to self-consistency of the values of gi, an
un-normalized statistical weight P0 is obtained for each time

point t of each replica k, which has the form

and gives the probability of sampling point t of replica k
with the unmodified force field.
2.4. Free-Energy Landscapes. As described in detail by

Tavernelli et al.,42 a two-dimensional representation of the
FEL can be obtained from simulated atomic trajectories by
plotting the negative logarithm of the joint probability
distribution of two global parameters, !1 and !2. The resulting
graph is a projection of the relative FEL, in units of kBT, on
a plane defined by the two global parameters. In the case of
H-REMD simulations, the probability distribution must be
calculated in a weighted manner; we did this using the
WHAM-derived statistical weights.
2.5. Native Contacts. For the definition of a set of native

contacts in CRT18, we have used the atomic trajectory
between 250 and 750 ps of our LCMD simulation. Each
residue was partitioned into main-chain and side-chain atoms,
and the minimum interatomic distance between these groups
was calculated for all snapshots in the trajectory, taking into
account only amino acids at least three residues apart along
the polypeptide chain. To be included in the list of native
contacts, pairs had to display interatomic distances lower than
0.37 nm for at least 60% of the time. By this procedure, we
have identified 25 native contacts, each of which was
assigned a weight corresponding to its fractional presence
during the 500 ps LCMD simulation segment. Summing up
the weights of the resulting matrix, we have obtained a
normalization factor F.
The existence of native contacts in all our simulations was

monitored and scored by means of the matrix derived as just
discussed. For each snapshot along a simulated trajectory,
we defined the fraction of native contacts (FNC) as the sum
of the weights-matrix elements corresponding to the native
contacts present at that time, divided by the normalization
factor F. Our analysis also included a monitoring of the total
number of contacts as a function of time.
2.6. Clustering. We performed a structural clustering of

the simulated ensembles using the algorithm described by
Daura et al.43 The procedure is based on the calculation of
a matrix of the pairwise positional root-mean-square devia-
tion (RMSD), after least-squares superposition, and the
choice of a cutoff to define the neighborhood of each cluster.
The structure with the largest number of neighbors is
considered to be the center of the largest cluster, and it is
removed, together with its neighbors, from the pool of
structures before again searching for the next largest cluster.
This procedure is repeated until all structures in the ensemble
are clustered.
In our clustering analyses, we used a cutoff of 0.1 nm

and considered only the backbone atoms of residues 3-16
(see Figure 1), both for the least-squares fitting and for the
computation of the RMSD. To give different weights to the
structures obtained with modified Hamiltonians during the
H-REMD simulation, we did the clustering analysis using
structures averaged over 5 ps intervals. For the classical MD

Ek(q) ) Vu(q) + fk V1(q) + fk
2 V2(q) (9)

Ei ) E0 + λ1,iV1 + λ2,iV2 λ1,i ) fi - 1; λ2,i ) fi
2 - 1

(10)

exp(-gi) )∑
k)1

R

∑
t)1

n exp(-#λ1,iV1,t
(k) - #λ2,iV2,t

(k))

∑
m)1

R

n exp[gm - #λ1,mV1,t
(k) - #λ2,mV2,t

(k)]

(i ) 1, ..., R) (11)

P0(k,t) ) [∑
m)1

R

n exp(gm - #λ1,mV1,t
(k) - #λ2,mV2,t

(k))]-1 (12)
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A Novel Hamiltonian Replica Exchange MD Protocol to
Enhance Protein Conformational Space Sampling
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Abstract: Limited searching in the conformational space is one of the major obstacles for
investigating protein dynamics by numerical approaches. For this reason, classical all-atom
molecular dynamics (MD) simulations of proteins tend to be confined to local energy minima,
particularly when the bulk solvent is treated explicitly. To overcome this problem, we have
developed a novel replica exchange protocol that uses modified force-field parameters to treat
interparticle nonbonded potentials within the protein and between protein and solvent atoms,
leaving unperturbed those relative to solvent-solvent interactions. We have tested the new
protocol on the 18-residue-long tip of the P domain of calreticulin in an explicit solvent. With
only eight replicas, we have been able to considerably enhance the conformational space
sampled during a 100 ns simulation, compared to as many parallel classical molecular dynamics
simulations of the same length or to a single one lasting 450 ns. A direct comparison between
the various simulations has been possible thanks to the implementation of the weighted histogram
analysis method, by which conformations simulated with modified force-field parameters can
be assigned different weights. Interatom, inter-residue distances in the structural ensembles
obtained with our novel replica exchange approach and by classical MD simulations compare
equally well with those derived from NMR data. Rare events, such as unfolding and refolding,
occur with reasonable statistical frequency. Visiting of conformations characterized by very small
Boltzmann weights is also possible. Despite their low probability, such regions of the
conformational space may play an important role in the search for local potential-energy minima
and in dynamically controlled functions.

1. Introduction
Proteins are complex systems characterized by very rough
free-energy landscapes (FEL). A feature that certainly
contributes to complexity is the presence of anisotropic
interactionssboth within the protein and between the
macromolecule and the surrounding solventswhere the
coexistence of repulsive and attractive terms leads to many

degenerate local energy minima. Such minima are separated
by free-energy barriers, whose heights are often much larger
than the thermal energy available to the system. For this
reason, conventional all-atom molecular dynamics (MD)
simulations of proteins in explicit solvent at room temper-
ature suffer of a problem known as kinetic trapping; namely,
the system tends to remain confined within one of the many
local energy minima. Therefore, physical quantities that
depend on an extensive sampling of the conformational space
cannot be adequately calculated. Furthermore, conformations
with very small Boltzmann weights, which are likely to be
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Biomolecular force fields have been traditionally derived based on a mixture of reference quantum chemistry data and
experimental information obtained on small fragments. However, the possibility to run extensive molecular dynamics
simulations on larger systems achieving ergodic sampling is paving the way to directly using such simulations along
with solution experiments obtained on macromolecular systems. Recently, a number of methods have been introduced
to automatize this approach. Here we review these methods, highlight their relationship with machine learning methods,
and discuss the open challenges in the field.

I. INTRODUCTION

Classical molecular dynamics (MD) simulations at the
atomistic scale offer a unique opportunity to model the con-
formational dynamics of biomolecular systems. Being able to
reveal mechanisms at spatial and temporal scales that are diffi-
cult to observe experimentally, MD simulations are often seen
as a computational microscope.1 In the past years, they have
been applied to study problems ranging from protein folding2

and aggregation3 to RNA-protein interactions,4,5 transmem-
brane proteins dynamics,6 and full viruses,7 bacteria,8 or
organelles.9 The capability of MD simulations to reproduce
and predict experimental results is limited by the statistical
errors arising from the finite length of simulations and by the
systematic errors resulting from the inaccuracies of the un-
derlying models. Interactions are often modeled using empir-
ically parametrized force fields that allow timescales of the
order of the microsecond to be routinely simulated. Impor-
tantly, the two sources of error mentioned above are deeply
intertwined, because only systematic errors that are larger than
statistical errors can be detected by comparison with reference
experimental results. Indeed, in the past 20 years, the use of
special purpose hardware,10 optimized software,11,12 and en-
hanced sampling methods,13,14 has significantly reduced the
statistical errors, thereby allowing force fields inaccuracies to
be detected and largely alleviated. In spite of this, empirical
force fields are still far from perfect and in some cases are
poorly predictive. For instance, it is not trivial to have force
fields capable of simultaneously describing correctly folded,
disordered, single-chain proteins or protein complexes,15,16 to
correctly predict RNA structure from sequence-only informa-
tion across a wide range of structural motifs,17 or to reproduce
experimental kinetics in ligand-receptor systems.18

Solution experiments are optimally suited for validation of
force fields, since they provide information about transiently
populated structures as well, and they have traditionally been
used in this sense. Nevertheless, several approaches have en-
abled solution experiments to be used directly during force-
field fitting, together with available quantum chemistry data.
The aim of this perspective is to review these approaches,
highlight their relationship with machine learning methods,
and discuss the open challenges in the field.

a)Electronic mail: bussi@sissa.it

II. EMPIRICAL FORCE FIELDS: BOTTOM UP OR TOP
DOWN?

We will use here as paradigmatic examples some of the
force fields that are most used for simulating biomolecu-
lar systems, namely AMBER,19 CHARMM,20 OPLS,21 and
GROMOS.22 All the mentioned force fields share a common
functional form, including bond stretching, angle potentials,
torsional potentials, Lennard-Jones, and electrostatic interac-
tions:

E = Â
bonds

1
2

kb(r� r0)
2 + Â

angles

1
2

ka(a�a0)
2+

Â
torsions

Â
n
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4ei j
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si j
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◆12
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si j
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!
+ Â

electrostatics

qiq j

ri j
(1)

The parameters (kb;r0;ka;a0;Vn;d ;s ;e;q) are derived from
small fragments in advance and depend on the atom type and
its chemical environment. Polarizable force fields (such as
AMOEBA23 and a variant of CHARMM24), reactive force
fields (such as ReaxFF25), and semi-empirical methods (such
as DFTB26) have different functional forms but similar con-
siderations can be applied. The parameters in Eq. 1 are de-
rived with a variety of different procedures that depend on the
specific force field and are summarized in Table I. In partic-
ular, some of the parameters are typically derived from quan-
tum chemistry calculations performed at a varying level of ac-
curacy, in a bottom-up spirit. Other parameters are instead
derived from experimental data, either using spectroscopy ex-
periments, databases of crystallographic structures, or other
gas-phase or solution-phase experiments, in a top-down spirit.

One of the factors impacting the reliability of a force field
is the accuracy of the employed reference data. For instance, a
force field fitted purely on quantum chemistry data cannot pro-
vide results that are more accurate than the reference method.
However, this limit can be surpassed if multiple sources of
data are combined. As an additional and perhaps even more
important source of error, one should take into account that
reference data used in force-field fitting, either computational
or experimental ones, are obtained studying systems that are
necessarily not identical to those that one wants to simulate
later (see Fig. 1). For instance, torsional parameters and par-
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ϵ′￼ij = ϵiϵj = λiλjϵij
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Figure 1. Flowchart of our HREX implementation. After having
performed Ns − 1 molecular dynamics steps, a coordinate swap is
carried out. Then, the energy is recomputed and coordinates are
swapped again. At this point, a further MD step is done and a real
exchange is attempted with a corrected Monte Carlo acceptance
(Equation (1)).

The flow of the modified replica exchange is depicted in
Figure 1. At the beginning of a time step where an exchange
is required, an exchange is unconditionally performed and
the total energy is computed using the local force field
for the coordinates obtained from another processor. This
energy is stored for later usage, and original (unswapped)
coordinates are restored with an extra unconditional ex-
change. At the end of the MD step, when the actual ex-
change is attempted, the previously stored energy is used
to accept/reject the exchange. The acceptance is then com-
puted in the most general manner, which allows replicas
with different bias potential, Hamiltonian and temperature,

α = min

(

1, e
−Ūi(rj )+Ūi (ri )

kB Ti
+

−Ūj (ri )+Ūj (rj )
kB Tj

)

, (1)

where Ū is defined as the sum of the force-field potential and
possibly additional potentials as computed by PLUMED.
Force-field parameters for the ‘hot’ replicas are edited using
simple scripts. In spite of the two extra swaps required at
each attempted exchange, the overhead is rather low. Its
exact value depends on the attempt frequency for replica
exchange, and in our experience never exceeded 10%.

We observe that our implementation differs from the
one proposed in Ref. [19], where the free-energy pertur-
bation method already available in GROMACS has been
exploited. Because of the way interactions for 0 < λ < 1
are treated in GROMACS, strictly speaking, it is not pos-
sible to set up a simulation following REST2 prescriptions
using free-energy perturbation. Moreover, calculation of
non-bonded interactions in the free-energy perturbation is

slower in GROMACS and can introduce significant over-
head even in the plain MD which is performed between
exchanges. On the other hand, the overhead of our im-
plementation is limited to the exchange step. Since the
stride between exchanges is typically on the order of at least
100 steps, this overhead is negligible.

3. Applications

3.1. Solute tempering: alanine dipeptide

As a first test case, we focused on alanine dipeptide, a
standard benchmark for enhanced sampling methods. The
low-energy conformations of this system can be described
using the two dihedral angles of the Ramachandran plot, φ

and ψ . Transitions between conformations C7eq(φ = −80◦,
ψ = 75◦) and C7ax(φ = 75◦, ψ = −75◦) are hindered by
large free-energy barriers. An alanine dipeptide molecule
modeled with Amber99sb force field [30] was solvated in a
box containing approximately 700 TIP3P water molecules
[31]. All bonds were kept rigid [32,33] and equations of
motion were integrated using a time step of 2 fs. Long-
range electrostatics was treated using particle-mesh Ewald
[34] and temperature was controlled by stochastic velocity
rescaling [35].

We performed a REST2 [20] simulation using five repli-
cas with values of λ ranging from 1 to 0.3 following a ge-
ometric distribution. This choice led to an acceptance rate
ranging from 35% to 50%. Exchanges are attempted every
100 steps. In Figure 2, the distributions of ψ and φ angles
explored by the first and last replicas are shown. It can be
seen how the change in the Hamiltonian effectively raises
the temperature of the molecule, thus decreasing the impact
of free-energy barriers. The time series of the φ dihedral
angle in the replica with λ = 1 is shown in Figure 3, to-
gether with a much longer single-replica simulation. At the
price of a factor 5 in the computational cost, the HREX
simulation sampled the phase space much faster. Since sev-
eral transitions between C7eq and C7ax are observed, we

Figure 2. Conformational space explored for alanine dipeptide
by first (λ = 1, left) and last (λ = 0.3, right) replicas. It can be
seen that the conformational space explored by the last replica is
larger.
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Figure 1. Flowchart of our HREX implementation. After having
performed Ns − 1 molecular dynamics steps, a coordinate swap is
carried out. Then, the energy is recomputed and coordinates are
swapped again. At this point, a further MD step is done and a real
exchange is attempted with a corrected Monte Carlo acceptance
(Equation (1)).

The flow of the modified replica exchange is depicted in
Figure 1. At the beginning of a time step where an exchange
is required, an exchange is unconditionally performed and
the total energy is computed using the local force field
for the coordinates obtained from another processor. This
energy is stored for later usage, and original (unswapped)
coordinates are restored with an extra unconditional ex-
change. At the end of the MD step, when the actual ex-
change is attempted, the previously stored energy is used
to accept/reject the exchange. The acceptance is then com-
puted in the most general manner, which allows replicas
with different bias potential, Hamiltonian and temperature,
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where Ū is defined as the sum of the force-field potential and
possibly additional potentials as computed by PLUMED.
Force-field parameters for the ‘hot’ replicas are edited using
simple scripts. In spite of the two extra swaps required at
each attempted exchange, the overhead is rather low. Its
exact value depends on the attempt frequency for replica
exchange, and in our experience never exceeded 10%.

We observe that our implementation differs from the
one proposed in Ref. [19], where the free-energy pertur-
bation method already available in GROMACS has been
exploited. Because of the way interactions for 0 < λ < 1
are treated in GROMACS, strictly speaking, it is not pos-
sible to set up a simulation following REST2 prescriptions
using free-energy perturbation. Moreover, calculation of
non-bonded interactions in the free-energy perturbation is

slower in GROMACS and can introduce significant over-
head even in the plain MD which is performed between
exchanges. On the other hand, the overhead of our im-
plementation is limited to the exchange step. Since the
stride between exchanges is typically on the order of at least
100 steps, this overhead is negligible.

3. Applications

3.1. Solute tempering: alanine dipeptide

As a first test case, we focused on alanine dipeptide, a
standard benchmark for enhanced sampling methods. The
low-energy conformations of this system can be described
using the two dihedral angles of the Ramachandran plot, φ

and ψ . Transitions between conformations C7eq(φ = −80◦,
ψ = 75◦) and C7ax(φ = 75◦, ψ = −75◦) are hindered by
large free-energy barriers. An alanine dipeptide molecule
modeled with Amber99sb force field [30] was solvated in a
box containing approximately 700 TIP3P water molecules
[31]. All bonds were kept rigid [32,33] and equations of
motion were integrated using a time step of 2 fs. Long-
range electrostatics was treated using particle-mesh Ewald
[34] and temperature was controlled by stochastic velocity
rescaling [35].

We performed a REST2 [20] simulation using five repli-
cas with values of λ ranging from 1 to 0.3 following a ge-
ometric distribution. This choice led to an acceptance rate
ranging from 35% to 50%. Exchanges are attempted every
100 steps. In Figure 2, the distributions of ψ and φ angles
explored by the first and last replicas are shown. It can be
seen how the change in the Hamiltonian effectively raises
the temperature of the molecule, thus decreasing the impact
of free-energy barriers. The time series of the φ dihedral
angle in the replica with λ = 1 is shown in Figure 3, to-
gether with a much longer single-replica simulation. At the
price of a factor 5 in the computational cost, the HREX
simulation sampled the phase space much faster. Since sev-
eral transitions between C7eq and C7ax are observed, we

Figure 2. Conformational space explored for alanine dipeptide
by first (λ = 1, left) and last (λ = 0.3, right) replicas. It can be
seen that the conformational space explored by the last replica is
larger.
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exchange is attempted with a corrected Monte Carlo acceptance
(Equation (1)).
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Figure 1. At the beginning of a time step where an exchange
is required, an exchange is unconditionally performed and
the total energy is computed using the local force field
for the coordinates obtained from another processor. This
energy is stored for later usage, and original (unswapped)
coordinates are restored with an extra unconditional ex-
change. At the end of the MD step, when the actual ex-
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simple scripts. In spite of the two extra swaps required at
each attempted exchange, the overhead is rather low. Its
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one proposed in Ref. [19], where the free-energy pertur-
bation method already available in GROMACS has been
exploited. Because of the way interactions for 0 < λ < 1
are treated in GROMACS, strictly speaking, it is not pos-
sible to set up a simulation following REST2 prescriptions
using free-energy perturbation. Moreover, calculation of
non-bonded interactions in the free-energy perturbation is
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head even in the plain MD which is performed between
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plementation is limited to the exchange step. Since the
stride between exchanges is typically on the order of at least
100 steps, this overhead is negligible.
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standard benchmark for enhanced sampling methods. The
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using the two dihedral angles of the Ramachandran plot, φ
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box containing approximately 700 TIP3P water molecules
[31]. All bonds were kept rigid [32,33] and equations of
motion were integrated using a time step of 2 fs. Long-
range electrostatics was treated using particle-mesh Ewald
[34] and temperature was controlled by stochastic velocity
rescaling [35].

We performed a REST2 [20] simulation using five repli-
cas with values of λ ranging from 1 to 0.3 following a ge-
ometric distribution. This choice led to an acceptance rate
ranging from 35% to 50%. Exchanges are attempted every
100 steps. In Figure 2, the distributions of ψ and φ angles
explored by the first and last replicas are shown. It can be
seen how the change in the Hamiltonian effectively raises
the temperature of the molecule, thus decreasing the impact
of free-energy barriers. The time series of the φ dihedral
angle in the replica with λ = 1 is shown in Figure 3, to-
gether with a much longer single-replica simulation. At the
price of a factor 5 in the computational cost, the HREX
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Figure 3. Convergence of HREX for alanine dipeptide. The an-
gle φ for (a) replica at λ = 1 and (b) for a longer, serial simulation.
(c) Estimate of the free-energy difference between C7eq and C7ax
as a function of the simulated time per replica, obtained from
analysing the replica at λ = 1. (d) Free-energy landscape as a
function of dihedral angle φ, as obtained from HREX, compared
with a reference metadynamics calculation. Results for HREX are
shown for different simulation lengths (simulated time per replica
equal to 4, 10 and 20 ns, as indicated), whereas metadynamics
profile has been obtained from a single 10-ns simulation.

could compute the relative stability of the two metastable
minima, which converged quickly (Figure 3(c)). The free-
energy profile as a function of the φ dihedral angle was also
computed and compared with a reference free-energy land-
scape obtained using well-tempered metadynamics [36]
(well-tempered factor #T= 2100 K, initial deposition rate
ω = 6.25 kJ/mol/ps, Gaussian width σ = 20◦, simulation
length = 10 ns). Profiles obtained at different stages of the
HREX simulation and reference metadynamics results are
shown in Figure 3(d). For this simple system, metadynam-
ics has the advantage of providing good statistics also on the
free-energy barriers. However, HREX is capable of repro-
ducing the correct free-energy difference between the two
minima and the correct shape of the two free-energy wells
using a minimal information about the simulated system.
This can be an advantage in cases where choosing collec-
tive variables is more difficult, such as the one discussed
below.

3.2. Partial tempering: RNA tetraloop

The second application is the structural characterisation of
a UUCG RNA tetraloop. UUCG tetraloops and small RNA
hairpins have been characterised in vitro and in silico by
several groups [37–41]. Atomistic molecular simulations
of tetraloop folding are difficult because of slow sampling
and the well-known inaccuracies of classical force fields
for RNA [40]. In a recent paper, Kuhrova et al. [41] have
shown the results of a long parallel-tempering simulation

Figure 4. Representation of the RNA tetraloop, hydrogen atoms
not shown. Atoms in the ‘hot’ region (tetraloop) are shown in red.
Atoms in the ‘cold’ region (stem) are shown in blue. Restrained
Watson–Crick hydrogen bonds are also marked. Graphics made
with VMD [42].

of a UUCG tetraloop. In their work, the full hairpin is ini-
tialised in a straight conformation, so as to blindly predict
its folded structure and stability. Our investigation was in-
stead limited to the exploration of the conformational space
available for the tetraloop, without studying the full hairpin
formation.

We started from an experimental structure (residue 31–
38 of PDB 1F7Y [43], sequence GCUUCGGC) solvated in
a box containing approximately 4600 water molecules and
added 14 Na+ and 7 Cl− atoms. All other simulation details
were chosen as in Section 3.1. After equilibration, we re-
strained the six Watson–Crick hydrogen bonds of the stem
(enforced distance 3Å, stiffness 25 kJ/mol/Å2; see Figure 4)
so as to suppress fraying of the first base pair and avoid se-
vere unfolding of the hairpin. We selected as a ‘hot’ region
the four nucleotides corresponding to the tetraloop (see
Figure 4), leaving the Hamiltonian for the stem unbiased
in all the replicas. We simulated 16 replicas using values
of λ ranging from 1 to 0.3 with a geometric distribution,
leading to an acceptance rate which is between 30% and
50%. This protocol allowed us to accelerate the sampling
of different conformations of the tetraloop, without perturb-
ing the stem too much. Simulations were performed using
two recently developed force fields, both based on Am-
ber99 force field [25]: parmbsc0 force field [22] (from now
on, bsc0) and ff99bsc0χOL3 force field [23] (from now on,
bsc0-OL).

In Figure 5, the root-mean-square deviation (RMSD)
of stem and loop from the reference experimental structure
is shown. The simulation performed using the bsc0 force
field quickly interconverted into an artificial ‘ladder-like’
structure [44], for which the RMSD of the stem from the
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Figure 5. RMSD of hairpin stem (bases 1, 2, 7 and 8) and loop
(bases 3, 4, 5 and 6) from the experimental structure, as obtained
from the unbiased replica (λ = 1) as a function of simulation time
per replica. Simulations were performed using bsc0 force field
[stem (a) and loop (b)] and bsc0-OL force field [stem (c) and loop
(d)]. It can be seen that the latter force field better stabilises the
native structure for the stem. Loop stability is also improved with
bsc0-OL, but in this case also non-native, high-RMSD structures
are sampled.

experimental structure is ≈ 4 Å. This is a known problem of
the bsc0 force field and has already been detected by means
of long MD simulations [see 40, and references therein].
Notably, with HREX, this happened in a very short period
of time (≈ 1 ns per replica). The coexistence of a correct
(low RMSD) and artificial (high RMSD) structure in Fig-
ure 5(a) is due to the fact that only the replica at λ = 1
is shown. More precisely, some trajectories switched to the
‘ladder-like’ structure, and other ones did not, resulting in
a mixed ensemble for the λ = 1 replica. The native loop
structure was even less stable. After approximately 10 ns
per replica, the native structure was destroyed in all repli-
cas and completely disappeared from the explored ensemble
(Figure 5(b)). On the other hand, the simulation performed
using the bsc0-OL force field behaved in a qualitatively
better way. The stem was very stable on the same timescale
(Figure 5(c)) and, even if spurious structures were appear-
ing in the loop, the native structure was still populated after
15 ns per replica (Figure 5(d)). This indicates that the ac-
tually explored ensemble and the experimental one are rea-
sonably overlapping.

These results show that HREX, especially in variants
where only a portion of a larger molecule is biased, can
be very effective in accelerating conformational sampling.
In particular, we were able to detect the known problems
of the bsc0 force field in a short computational time. A
deeper investigation of the force-field dependence of the
conformational space available for an RNA tetraloop will
be the subject of further investigations.

4. Conclusions

In conclusion, a flexible implementation of HREX for
GROMACS was discussed. This implementation can be
used to combine replicas at different temperature, pres-
sure and using different force fields. It was validated on
the simple case of alanine dipeptide in water, where results
obtained with a reference well-tempered metadynamics cal-
culation were correctly reproduced. Then, HREX was used
to extensively sample the available conformations in an
RNA tetraloop, comparing two different force fields. Our
software is available upon request and will be distributed
together with the next release of PLUMED.
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Figure 3. Convergence of HREX for alanine dipeptide. The an-
gle φ for (a) replica at λ = 1 and (b) for a longer, serial simulation.
(c) Estimate of the free-energy difference between C7eq and C7ax
as a function of the simulated time per replica, obtained from
analysing the replica at λ = 1. (d) Free-energy landscape as a
function of dihedral angle φ, as obtained from HREX, compared
with a reference metadynamics calculation. Results for HREX are
shown for different simulation lengths (simulated time per replica
equal to 4, 10 and 20 ns, as indicated), whereas metadynamics
profile has been obtained from a single 10-ns simulation.

could compute the relative stability of the two metastable
minima, which converged quickly (Figure 3(c)). The free-
energy profile as a function of the φ dihedral angle was also
computed and compared with a reference free-energy land-
scape obtained using well-tempered metadynamics [36]
(well-tempered factor #T= 2100 K, initial deposition rate
ω = 6.25 kJ/mol/ps, Gaussian width σ = 20◦, simulation
length = 10 ns). Profiles obtained at different stages of the
HREX simulation and reference metadynamics results are
shown in Figure 3(d). For this simple system, metadynam-
ics has the advantage of providing good statistics also on the
free-energy barriers. However, HREX is capable of repro-
ducing the correct free-energy difference between the two
minima and the correct shape of the two free-energy wells
using a minimal information about the simulated system.
This can be an advantage in cases where choosing collec-
tive variables is more difficult, such as the one discussed
below.

3.2. Partial tempering: RNA tetraloop

The second application is the structural characterisation of
a UUCG RNA tetraloop. UUCG tetraloops and small RNA
hairpins have been characterised in vitro and in silico by
several groups [37–41]. Atomistic molecular simulations
of tetraloop folding are difficult because of slow sampling
and the well-known inaccuracies of classical force fields
for RNA [40]. In a recent paper, Kuhrova et al. [41] have
shown the results of a long parallel-tempering simulation

Figure 4. Representation of the RNA tetraloop, hydrogen atoms
not shown. Atoms in the ‘hot’ region (tetraloop) are shown in red.
Atoms in the ‘cold’ region (stem) are shown in blue. Restrained
Watson–Crick hydrogen bonds are also marked. Graphics made
with VMD [42].

of a UUCG tetraloop. In their work, the full hairpin is ini-
tialised in a straight conformation, so as to blindly predict
its folded structure and stability. Our investigation was in-
stead limited to the exploration of the conformational space
available for the tetraloop, without studying the full hairpin
formation.

We started from an experimental structure (residue 31–
38 of PDB 1F7Y [43], sequence GCUUCGGC) solvated in
a box containing approximately 4600 water molecules and
added 14 Na+ and 7 Cl− atoms. All other simulation details
were chosen as in Section 3.1. After equilibration, we re-
strained the six Watson–Crick hydrogen bonds of the stem
(enforced distance 3Å, stiffness 25 kJ/mol/Å2; see Figure 4)
so as to suppress fraying of the first base pair and avoid se-
vere unfolding of the hairpin. We selected as a ‘hot’ region
the four nucleotides corresponding to the tetraloop (see
Figure 4), leaving the Hamiltonian for the stem unbiased
in all the replicas. We simulated 16 replicas using values
of λ ranging from 1 to 0.3 with a geometric distribution,
leading to an acceptance rate which is between 30% and
50%. This protocol allowed us to accelerate the sampling
of different conformations of the tetraloop, without perturb-
ing the stem too much. Simulations were performed using
two recently developed force fields, both based on Am-
ber99 force field [25]: parmbsc0 force field [22] (from now
on, bsc0) and ff99bsc0χOL3 force field [23] (from now on,
bsc0-OL).

In Figure 5, the root-mean-square deviation (RMSD)
of stem and loop from the reference experimental structure
is shown. The simulation performed using the bsc0 force
field quickly interconverted into an artificial ‘ladder-like’
structure [44], for which the RMSD of the stem from the

Stem Loop

Bussi Mol Phys (2014)



Advanced use

Bellucci et al Nanoscale (2017)

Appadurai et al, Nat Commun (2021)

Mixing temperature and Hamiltonian changes

3. Aβ42 at the gold/water interface [ABAU-HTREMD]:
HT-REMD simulation spanning temperatures between 300 K
and 450 K over a cumulative period of 20 μs using 128 replicas
initialized from the final structures of the adsorption trajec-
tories. The gold/protein interactions were scaled starting from
replica 20 (i.e. at 320 K) following the scheme reported in ref.
42. The scaling factor spanned between 1 and 0.6, thus, in the
last replica, the gold/protein interactions are scaled by a factor
of 0.6.

All the simulations were performed with the software
GROMACS43 (v4.5.3) complemented by the PLUMED44 (v1.3)
plugin. The peptide was modeled in the zwitterionic form with
an N-terminal of NH3

+ and a C-terminal of COO−. According to
the protonation state of amino acid side chains at neutral pH,
lysine and arginine side-chains were protonated and glutamic
and aspartic acid side chains were deprotonated. Histidines
were chosen to be neutral. Details of the preparation of the
systems for the different steps, of the simulations and of the
result analysis are given in the section “Methods and compu-
tational details” of the ESI.†

3. Results
3.1. Aβ42 in solution is an intrinsically disordered peptide
and mostly globular

This part of our work assesses our computational methodology
with respect to available data for the free peptide and simul-
taneously provides us with a set of representative structures to
start the adsorption process and to interpret the modifications
induced by the surface environment.

The conformational ensemble of Aβ42 in solution resulting
from our T-REMD simulation, ABWT-TREMD, is totally con-
sistent with previous recent studies.45–53 The radius of gyration
(Rg), which measures the compactness of a protein, and the
distance distribution function P(r) are routinely used to charac-
terize the shape and conformation of peptides in solution;
these quantities are amenable to comparison with data from
Small-Angle X-ray Scattering (SAXS) measurements.54

The average value of Rg for ABWT-TREMD is 1.0 ± 0.1 nm,
which is in agreement with the experimental value of 0.9 ±
0.1 nm.51 The Rg distribution (blue in Fig. 2A) shows a main
peak centered at 1 nm and a broad peak centered at 1.25 nm,
with a tail that extends up to 1.5 nm. The presence of the
second peak at a high Rg suggests the existence of an equili-
brium between elongated states (Rg > 1.15 nm) and globular
states (Rg < 1.15 nm), with the latter prevailing: the elongated
states represent 6% of the total population. The distance distri-
bution function P(r) for ABWT-TREMD (blue in Fig. 2B) shows
the characteristic profile of an intrinsically disordered
peptide,54 with a single broad peak centered at 1.1 nm and a
tail that extends beyond 3 nm. The maximum distance (rmax)
evaluated for all atoms of the ABWT-TREMD system is 5.8 nm,
whereas the maximum intramolecular distance between the Cα

atoms is rCα!Cα
max ¼ 5:1 nm (Fig. S4†). The computed profile is

further evidence of the equilibrium between elongated coils

and more compact globular conformations. The distribution
P(r) in Fig. 2B is suitable for a comparison with SAXS experi-
mental findings, but we are not aware of such data for the
Aβ42 monomer. In contrast, experimental data (chemical
shifts55 and J-coupling constants48) from nuclear magnetic res-
onance (NMR) experiments on the Aβ42 monomer in solution
are available. From the simulated conformational ensemble in
solution, we can extract J values and chemical shifts by using
empirical relations (ESI†). The experimental–computational
comparison for these quantities is reported in Fig. S5 in the
ESI.† The scalar coupling values in ABWT-TREMD are between
4 Hz and 9 Hz (Fig. 2C). The average scalar coupling is 6.5 ±
0.85 Hz, consistent with a random coil ensemble.56 A weak
trend toward a helix structure is detected in residues 12–16.
A trend to adopt a β structure in the C-terminal is also observed,
although we note a slight underestimation of J for residue 41,

Fig. 2 Comparison of the experimental-computed data in water and at
the gold/water interface. A. Distribution of the radius of gyration (Rg). At
Rg values greater than 1.15 nm the peptide is in extended
conformations. B. Distribution of all atom–atom distances in Aβ42. The
most extended conformations (Rg > 2 nm) occur at the gold
surface. C. J (HN-HA) couplings: glycine residues were not included.
Blue: ABWT-TREMD. Orange: ABAU-HTREMD.
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Constructing multiple topologies

# create a “self contained” top file
gmx grompp -pp processed.top

# edit to select “hot” atoms (add _ to atom names)
vi processed.top 

# use this tool distributed with plumed to scale hot atoms
plumed partial_tempering 0.5 < processed.top > scaled0.5.top

# !!! double check carefully the resulting topology !!!

WARNING: the partial_tempering script tries to understand as much as possible of 
gromacs top files, but might fail! E.g., CHARMM CMAPs are tricky to scale (see 
PLUMED mailing list) 

You can use your own tools to generate scaled topologies



Multiple replicas with plumed + gromacs

mpiexec -np 16 gmx_mpi mdrun -multidir dir? dir??

               -plumed ../plumed.dat -replex 200 -hrex

# a single plumed file (likely empty?)
# see in masterclass 21.5 how to have one plumed.dat file
# per replica
plumed.dat
dir0/topol.tpr
dir1/topol.tpr
…
dir15/topol.tpr

attention to shell globbing

topol.tpr might be generated with:

• different initial coordinates 

• different temperatures/pressure (be careful with pressure, not really tested)

• different lambdas (alchemical) (not really tested)

• different force-field parameters (but identical masses)



Instructions

1. Go to www.plumed.org
2. Click on the Masterclass tab
3. Click on the Topic of class 22.10
4. 1 week to complete the exercises
5. Questions/discussions on Slack channel masterclass-22-10
6. Lecture I and II available on YouTube

http://www.plumed.org

